Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Paudel YN, Angelopoulou E, Jones NC, O'Brien TJ, Kwan P, Piperi C, et al.
    ACS Chem Neurosci, 2019 10 16;10(10):4199-4212.
    PMID: 31532186 DOI: 10.1021/acschemneuro.9b00460
    Emerging findings point toward an important interconnection between epilepsy and Alzheimer's disease (AD) pathogenesis. Patients with epilepsy (PWE) commonly exhibit cognitive impairment similar to AD patients, who in turn are at a higher risk of developing epilepsy compared to age-matched controls. To date, no disease-modifying treatment strategy is available for either epilepsy or AD, reflecting an immediate need for exploring common molecular targets, which can delineate a possible mechanistic link between epilepsy and AD. This review attempts to disentangle the interconnectivity between epilepsy and AD pathogenesis via the crucial contribution of Tau protein. Tau protein is a microtubule-associated protein (MAP) that has been implicated in the pathophysiology of both epilepsy and AD. Hyperphosphorylation of Tau contributes to the different forms of human epilepsy and inhibition of the same exerted seizure inhibitions and altered disease progression in a range of animal models. Moreover, Tau-protein-mediated therapy has demonstrated promising outcomes in experimental models of AD. In this review, we discuss how Tau-related mechanisms might present a link between the cause of seizures in epilepsy and cognitive disruption in AD. Untangling this interconnection might be instrumental in designing novel therapies that can minimize epileptic seizures and cognitive deficits in patients with epilepsy and AD.
    Matched MeSH terms: Alzheimer Disease/metabolism*
  2. Mihardja M, Roy J, Wong KY, Aquili L, Heng BC, Chan YS, et al.
    Ann N Y Acad Sci, 2020 10;1478(1):43-62.
    PMID: 32700392 DOI: 10.1111/nyas.14436
    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the hallmark pathologies of amyloid-beta plaques and neurofibrillary tangles. Symptoms of this devastating disease include behavioral changes and deterioration of higher cognitive functions. Impairment of neurogenesis has also been shown to occur in AD, which adversely impacts new neuronal cell growth, differentiation, and survival. This impairment possibly results from the cumulative effects of the various pathologies of AD. Preclinical studies have suggested that the administration of melatonin-the pineal hormone primarily responsible for the regulation of the circadian rhythm-targets the effects of AD pathologies and improves cognitive impairment. It is postulated that by mitigating the effect of these pathologies, melatonin can also rescue neurogenesis impairment. This review aims to explore the effect of AD pathologies on neurogenesis, as well as the mechanisms by which melatonin is able to ameliorate AD pathologies to potentially promote neurogenesis.
    Matched MeSH terms: Alzheimer Disease/metabolism
  3. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S
    Appl Biochem Biotechnol, 2017 Nov;183(3):853-866.
    PMID: 28417423 DOI: 10.1007/s12010-017-2468-6
    Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aβ). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aβ42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aβ42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aβ42 alone and that more extensive Aβ formation, such as accumulation of intraneuronal Aβ, Aβ plaques, soluble oligomeric Aβ (oAβ), and insoluble fibrillar Aβ (fAβ) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aβ42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aβ2/40 ratio compared to wild-type and single-mutant cells.
    Matched MeSH terms: Alzheimer Disease/metabolism
  4. Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N
    Biomed Res Int, 2018;2018:3740461.
    PMID: 29707568 DOI: 10.1155/2018/3740461
    Neurodegenerative diseases are hereditary or sporadic conditions that result in the progressive loss of the structure and function of neurons as well as neuronal death. Although a range of diseases lie under this umbrella term, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases that affect a large population around the globe. Alzheimer's disease is characterized by the abnormal accumulation of extracellular amyloid-β plaques and intraneuronal neurofibrillary tangles in brain regions and manifests as a type of dementia in aged individuals that results in memory loss, multiple cognitive abnormalities, and intellectual disabilities that interfere with quality of life. Since the discovery of AD, a wealth of new information has emerged that delineates the causes, mechanisms of disease, and potential therapeutic agents, but an effective remedy to cure the diseases has not been identified yet. This could be because of the complexity of the disease process, as it involves various contributing factors that include environmental factors and genetic predispositions. This review summarizes the current understanding on neurodegenerative mechanisms that lead to the emergence of the pathology of AD.
    Matched MeSH terms: Alzheimer Disease/metabolism*
  5. Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, et al.
    Biomed Pharmacother, 2019 Mar;111:765-777.
    PMID: 30612001 DOI: 10.1016/j.biopha.2018.12.101
    Neurodegenerative diseases are usually sporadic in nature and commonly influenced by a wide range of genetic, life style and environmental factors. A unifying feature of Alzheimer's disease (AD) and Parkinson's disease (PD) is the abnormal accumulation and processing of mutant or damaged intra and extracellular proteins; this leads to neuronal vulnerability and dysfunction in the brain. Through a detailed review of ubiquitin proteasome, mRNA splicing, mitochondrial dysfunction, and oxidative stress pathway interrelation on neurodegeneration can improve the understanding of the disease mechanism. The identified pathways common to AD and PD nominate promising new targets for further studies, and as well as biomarkers. These insights suggested would likely provide major stimuli for developing unified treatment approaches to combat neurodegeneration. More broadly, pathways can serve as vehicles for integrating findings from diverse studies of neurodegeneration. The evidence examined in this review provides a brief overview of the current literature on significant pathways in promoting in AD, PD. Additionally, these insights suggest that biomarkers and treatment strategies may require simultaneous targeting of multiple components.
    Matched MeSH terms: Alzheimer Disease/metabolism*
  6. Siddiqui A, Shah Z, Jahan RN, Othman I, Kumari Y
    Biomed Pharmacother, 2021 Dec;144:112250.
    PMID: 34607104 DOI: 10.1016/j.biopha.2021.112250
    The resin/gum of Boswellia species belonging to the family of Burseraceae is a naturally occurring mixture of bioactive compounds, which was traditionally used as a folk medicine to treat conditions like chronic inflammation. Several research studies have also explored its' therapeutic potential against multiple neurodegenerative diseases such as Alzheimer's disease (AD). The main chemical constituents of this gum include boswellic acids (BAs) like 3-O-acetyl-11-keto-β boswellic acid (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD. It is also involved in inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels as well as its binding with nicotinic receptors to produce anti-inflammatory effects. Multiple shreds of evidence have demonstrated that BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aβ), and neurofibrillary tangles formation (NFTs) that are involved in AD progression. The present review focuses on the possible mechanistic therapeutic role of BAs in modulating the 5-LOX/COX pathway in arachidonic acid metabolism, activating Nrf2 through binding of ARE, inhibiting NF-kB and AChE activity. In addition, an inhibition of amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) induced neurotoxicity and neuroinflammation in AD by BAs is also discussed in this review. We have also highlighted that BAs possess beneficial effects in AD by targeting multiple molecular pathways and makes it an emerging drug candidate for treating neurodegenerative diseases.
    Matched MeSH terms: Alzheimer Disease/metabolism
  7. Zha GF, Zhang CP, Qin HL, Jantan I, Sher M, Amjad MW, et al.
    Bioorg Med Chem, 2016 05 15;24(10):2352-9.
    PMID: 27083471 DOI: 10.1016/j.bmc.2016.04.015
    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.
    Matched MeSH terms: Alzheimer Disease/metabolism
  8. Gurjar AS, Darekar MN, Yeong KY, Ooi L
    Bioorg Med Chem, 2018 05 01;26(8):1511-1522.
    PMID: 29429576 DOI: 10.1016/j.bmc.2018.01.029
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with multiple factors associated with its pathogenesis. Our strategy against AD involves design of multi-targeted 2-substituted-4,5-diphenyl-1H-imidazole analogues which can interact and inhibit AChE, thereby, increasing the synaptic availability of ACh, inhibit BuChE, relieve induced oxidative stress and confer a neuroprotective role. Molecular docking was employed to study interactions within the AChE active site. In silico ADME study was performed to estimate pharmacokinetic parameters. Based on computational studies, some analogues were synthesized and subjected to pharmacological evaluation involving antioxidant activity, toxicity and memory model studies in animals followed by detailed mechanistic in vitro cholinesterase inhibition study. Amongst the series, analogue 13 and 20 are the most promising multi-targeted candidates which can potentially increase memory, decrease free radical levels and protect neurons against cognitive deficit.
    Matched MeSH terms: Alzheimer Disease/metabolism
  9. Ashraf Ali M, Ismail R, Choon TS, Kumar RS, Osman H, Arumugam N, et al.
    Bioorg Med Chem Lett, 2012 Jan 1;22(1):508-11.
    PMID: 22142546 DOI: 10.1016/j.bmcl.2011.10.087
    Pyrrolothiazolyloxindole analogues share vital pharmacological properties, considered useful in Alzheimer's disease (AD). The aim of this study was synthesis and evaluate pyralothiazolyloxindole analogues if possess acetyl cholinesterase (AChE) inhibitory activity. The easily accessible one-pot synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compound was the most potent inhibitors of the series against acetyl cholinesterase enzyme with IC(50) 0.11μmol/L.
    Matched MeSH terms: Alzheimer Disease/metabolism
  10. Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, et al.
    CNS Neurol Disord Drug Targets, 2020;19(3):174-183.
    PMID: 32418534 DOI: 10.2174/1871527319666200518102130
    The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords "insulin"; "insulin resistance"; "Alzheimer's disease"; "Parkinson's disease" in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.
    Matched MeSH terms: Alzheimer Disease/metabolism*
  11. Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF
    Cells, 2020 02 07;9(2).
    PMID: 32046119 DOI: 10.3390/cells9020383
    Alzheimer's disease (AD) is a devastating neurodegenerative disorder and a leading cause of dementia, with accumulation of amyloid-beta (Aβ) and neurofibrillary tangles (NFTs) as defining pathological features. AD presents a serious global health concern with no cure to date, reflecting the complexity of its pathogenesis. Recent evidence indicates that neuroinflammation serves as the link between amyloid deposition, Tau pathology, and neurodegeneration. The high mobility group box 1 (HMGB1) protein, an initiator and activator of neuroinflammatory responses, has been involved in the pathogenesis of neurodegenerative diseases, including AD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein that exerts its biological activity mainly through binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). RAGE and TLR4 are key components of the innate immune system that both bind to HMGB1. Targeting of HMGB1, RAGE, and TLR4 in experimental AD models has demonstrated beneficial effects in halting AD progression by suppressing neuroinflammation, reducing Aβ load and production, improving spatial learning, and inhibiting microglial stimulation. Herein, we discuss the contribution of HMGB1 and its receptor signaling in neuroinflammation and AD pathogenesis, providing evidence of its beneficial effects upon therapeutic targeting.
    Matched MeSH terms: Alzheimer Disease/metabolism*
  12. Chong FP, Ng KY, Koh RY, Chye SM
    Cell Mol Neurobiol, 2018 Jul;38(5):965-980.
    PMID: 29299792 DOI: 10.1007/s10571-017-0574-1
    Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.
    Matched MeSH terms: Alzheimer Disease/metabolism*
  13. Thew HY, Boon Keat K, Tan YC, Ong YS, Parat MO, Murugaiyah V, et al.
    Chem Biol Interact, 2024 May 01;394:110978.
    PMID: 38552766 DOI: 10.1016/j.cbi.2024.110978
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) protein aggregates, leading to synaptic dysfunction and neuronal cell death. In this study, we used a comprehensive approach encompassing in vitro assays, computational analyses, and an in vivo Caenorhabditis elegans model to evaluate the inhibitory effects of various xanthones, focusing on Garcinone D (GD), on Aβ42 oligomer formation. Dot blot analysis revealed concentration-dependent responses among xanthones, with GD consistently inhibiting Aβ42 oligomer formation at low concentrations (0.1 and 0.5 μM, inhibitions of 84.66 ± 2.25% and 85.06 ± 6.57%, respectively). Molecular docking and dynamics simulations provided insights into the molecular interactions between xanthones and Aβ42, highlighting the disruption of key residues involved in Aβ42 aggregation. The neuroprotective potential of GD was established using transgenic C. elegans GMC101, with substantial delays in paralysis reported at higher concentrations. Our findings show that GD is a potent suppressor of Aβ42 oligomer formation, suggesting its potential as a therapeutic candidate for AD. The concentration-dependent effects observed in both in vitro and in vivo models underscore the need for nuanced dose-response assessments. These findings contribute novel insights into the therapeutic landscape of xanthones against AD, emphasizing the multifaceted potential of GD for further translational endeavors in neurodegenerative disorder research.
    Matched MeSH terms: Alzheimer Disease/metabolism
  14. Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, et al.
    Comput Biol Chem, 2018 Dec;77:72-86.
    PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007
    The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
    Matched MeSH terms: Alzheimer Disease/metabolism
  15. Chan HH, Koh RY, Lim CL, Leong CO
    Curr Alzheimer Res, 2019;16(10):907-918.
    PMID: 31642777 DOI: 10.2174/1567205016666191023102422
    Alzheimer's Disease (AD) is an age-dependent neurodegenerative disorder, the most common type of dementia that is clinically characterized by the presence of beta-amyloid (Aβ) extracellularly and intraneuronal tau protein tangles that eventually leads to the onset of memory and cognition impairment, development of psychiatric symptoms and behavioral disorders that affect basic daily activities. Current treatment approved by the U.S Food and Drug Administration (FDA) for AD is mainly focused on the symptoms but not on the pathogenesis of the disease. Recently, receptor-interacting protein kinase 1 (RIPK1) has been identified as a key component in the pathogenesis of AD through necroptosis. Furthermore, genetic and pharmacological suppression of RIPK1 has been shown to revert the phenotype of AD and its mediating pathway is yet to be deciphered. This review is aimed to provide an overview of the pathogenesis and current treatment of AD with the involvement of autophagy as well as providing a novel insight into RIPK1 in reverting the progression of AD, probably through an autophagy machinery.
    Matched MeSH terms: Alzheimer Disease/metabolism*
  16. Ha ZY, Mathew S, Yeong KY
    Curr Protein Pept Sci, 2020;21(1):99-109.
    PMID: 31702488 DOI: 10.2174/1389203720666191107094949
    Butyrylcholinesterase is a serine hydrolase that catalyzes the hydrolysis of esters in the body. Unlike its sister enzyme acetylcholinesterase, butyrylcholinesterase has a broad substrate scope and lower acetylcholine catalytic efficiency. The difference in tissue distribution and inhibitor sensitivity also points to its involvement external to cholinergic neurotransmission. Initial studies on butyrylcholinesterase showed that the inhibition of the enzyme led to the increment of brain acetylcholine levels. Further gene knockout studies suggested its involvement in the regulation of amyloid-beta, a brain pathogenic protein. Thus, it is an interesting target for neurological disorders such as Alzheimer's disease. The substrate scope of butyrylcholinesterase was recently found to include cocaine, as well as ghrelin, the "hunger hormone". These findings led to the development of recombinant butyrylcholinesterase mutants and viral gene therapy to combat cocaine addiction, along with in-depth studies on the significance of butyrylcholinesterase in obesity. It is observed that the pharmacological impact of butyrylcholinesterase increased in tandem with each reported finding. Not only is the enzyme now considered an important pharmacological target, it is also becoming an important tool to study the biological pathways in various diseases. Here, we review and summarize the biochemical properties of butyrylcholinesterase and its roles, as a cholinergic neurotransmitter, in various diseases, particularly neurodegenerative disorders.
    Matched MeSH terms: Alzheimer Disease/metabolism
  17. Islam MA, Khandker SS, Alam F, Khalil MI, Kamal MA, Gan SH
    Curr Top Med Chem, 2017;17(12):1408-1428.
    PMID: 28049401 DOI: 10.2174/1568026617666170103163054
    Alzheimer's disease (AD), which largely affects the elderly, has become a global burden. Patients with AD have both short- and long-term memory impairments. The neuronal loss in AD occurs due to abnormally folded amyloid beta proteins and aggregation of hyperphosphorylated tau proteins in the brain. Eventually, amyloid plaques and neurofibrillary tangles are formed, which subsequently disintegrate the neuronal transport system. There are several factors which are involved in AD pathogenesis, including oxidative stress, inflammation and the presence of metal ions. The modern therapies utilized for AD treatment have many adverse effects, driving the quest for more safe and effective medications. Many dietary components, including different types of fruits, vegetables, spices, and marine products as well as a Mediterranean diet, are a good source of antioxidants and have anti-inflammatory properties, with many showing substantial potential against AD pathogenesis. In this review, we discuss the potential of these foods for treating AD and opportunities for developing disease-targeted drugs from active compounds extracted from natural dietary products.
    Matched MeSH terms: Alzheimer Disease/metabolism
  18. Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, et al.
    Drug Des Devel Ther, 2018;12:3999-4021.
    PMID: 30538427 DOI: 10.2147/DDDT.S173970
    The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
    Matched MeSH terms: Alzheimer Disease/metabolism*
  19. Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X
    Drug Dev Res, 2019 09;80(6):837-845.
    PMID: 31301179 DOI: 10.1002/ddr.21567
    The objective of this study was to evaluate the neuroprotective effect of sitagliptin (Sita), quercetin (QCR) and its combination in β-amyloid (Aβ) induced Alzheimer's disease (AD). Male Sprague-Dawley rats, weighing between 220 and 280 g were used for experiment. Rats were divided into 5 groups (n = 10) and the groups were as follows: (a) Sham control; (b) Aβ injected; (c) Aβ injected + Sita 100; (d) Aβ injected + QCR 100; and (e) Aβ injected + Sita 100 + QCR 100. Cognitive performance was observed by the Morris water maze (MWM), biochemical markers, for example, MDA, SOD, CAT, GSH, Aβ1-42 level, Nrf2/HO-1 expression and histopathological study of rat brain were estimated. Pretreatment with Sita, QCR and their combination showed a significant increase in escape latency in particular MWM cognitive model. Further co-administration of sita and QCR significantly reduced Aβ1-42 level when compared with individual treatment. Biochemical markers, for example, increased SOD, CAT and GSH, decreased MDA were seen, and histopathological studies revealed the reversal of neuronal damage in the treatment group. Additionally, Nrf2/HO-1 pathway in rat's brain was significantly increased by Sita, QCR and their combination. Pretreatment with QCR potentiates the action of Sita in Aβ induced AD in rats. The improved cognitive memory could be because of the synergistic effect of the drugs by decreasing Aβ1-42 level, antioxidant activity and increased expression of Nrf2/HO-1 in rat brain.
    Matched MeSH terms: Alzheimer Disease/metabolism
  20. Prakash A, Kalra J, Mani V, Ramasamy K, Majeed AB
    Expert Rev Neurother, 2015 Jan;15(1):53-71.
    PMID: 25495260 DOI: 10.1586/14737175.2015.988709
    Alzheimer's disease (AD) is the most common CNS disorder occurring worldwide. There is neither proven effective prevention for AD nor a cure for patients with this disorder. Hence, there is an urgent need to develop safer and more efficacious drugs to help combat the tremendous increase in disease progression. The present review is an attempt at discussing the treatment strategies and drugs under clinical trials governing the modulation of neurotransmitter. Therefore, looking at neurotransmitter abnormalities, there is an urge for developing the pharmacological approaches aimed at correcting those abnormalities and dysfunctioning. In addition, this review also discusses the drugs that are in Phase III trials for the treatment of AD. Despite advances in treatment strategies aimed at correcting neurotransmitter abnormalities, there exists a need for the development of drug therapies focusing on the attempts to remove the pathogenomic protein deposits, thus combating the disease progression.
    Matched MeSH terms: Alzheimer Disease/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links