Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Yasin RM, Suan KA, Meng CY
    Sex Transm Dis, 1997 May;24(5):257-60.
    PMID: 9153733
    BACKGROUND AND OBJECTIVES: The antimicrobial susceptibility pattern of Neisseria gonorrhoeae varies from one country to another and may also change with time. To monitor these variations and changes, it is desirable to have a method that is simple and reproducible. This study was undertaken to determine the in vitro susceptibility of N. gonorrhoeae to azithromycin and to assess the reliability of results obtained using E-test methodology for determination of the minimum inhibitory concentration (MIC) of azithromycin.

    STUDY DESIGN: The MICs for 135 clinical isolates of N. gonorrhoeae were determined by a modified Kirby-Bauer method recommended by the National Committee for Clinical Laboratory Standards against penicillin, cefuroxime, ceftriaxone, norfloxacin, tetracycline, kanamycin, spectinomycin, and azithromycin. The MIC of azithromycin was determined by both the E-test and agar dilution method. All tests were done simultaneously.

    RESULTS: The MIC of azithromycin to all 135 isolates ranged from 0.078 to 0.25 microgram/ml with the agar dilution method and from 0.016 to 0.50 microgram/ml with the E-test. The MIC50 and MIC90 of azithromycin were 0.064 microgram/ml and 0.125 microgram/ml, respectively, by the agar dilution method, whereas they are slightly higher by the E-test method. Seventy-six of the isolates were beta-lactamase producers and 69 were high-level tetracycline-resistant N. gonorrhoeae. There was no difference in the MIC50 and MIC90 of azithromycin in these groups of isolates. The percentage agreement within the acceptable +/-1 log2 dilution difference between MICs obtained by E-test and those obtained by the agar dilution method was 97.8%.

    CONCLUSIONS: Azithromycin has a very good in vitro antigonococcal activity, and the E-test is a reliable method to determine the MIC of azithromycin against N. gonorrhoeae.

    Matched MeSH terms: Azithromycin/pharmacology*
  2. Ul Mustafa Z, Salman M, Aldeyab M, Kow CS, Hasan SS
    SN Compr Clin Med, 2021 May 28.
    PMID: 34095752 DOI: 10.1007/s42399-021-00966-5
    The discovery of different antimicrobial agents has revolutionized the treatment against a variety of infections for many decades, but the emergence of antimicrobial resistance require rigorous measures, even amid the coronavirus disease 2019 (COVID-19) pandemic. This retrospective study aimed to examine the consumption of antibiotics in patients with COVID-19 admitted into the five hospitals in the province of Punjab, Pakistan. We collected data on the consumption of antibiotics, classified using the World Health Organization (WHO) AWaRe (Access, Watch, and Reserve), within two months-August and September, 2020, and the corresponding months in 2019. Consumption of antibiotics was presented as daily define dose (DDD) per 100 occupied bed-days. Eight different classes of antibiotics were prescribed to patients with COVID-19 without culture tests being performed, with the prescribing of antibiotics of the Watch category was especially prevalent. The consumption of antibiotics was higher during the COVID-19 pandemic compared to the pre-pandemic period: the consumption of azithromycin increased from 11.5 DDDs per 100 occupied bed-days in 2019 to 17.0 DDDs per 100 occupied bed-days in 2020, while the consumption of ceftriaxone increased from 20.2 DDDs per 100 occupied bed-days in 2019 to 25.1 DDDs per 100 occupied bed-days in 2020. The current study revealed non-evidence-based utilization of antibiotics among patients with COVID-19 admitted into the hospitals in Pakistan. Evidently, the current COVID-19 pandemic is a public health threat of notable dimensions which has compromised the ongoing antimicrobial stewardship program, potentially leading to the emergence of antimicrobial resistance among pathogens.
    Matched MeSH terms: Azithromycin
  3. Tan CL, Fhun LC, Tai EL, Abdul Gani NH, Muhammed J, Tuan Jaafar TN, et al.
    J Trop Med, 2017;2017:7946123.
    PMID: 28265290 DOI: 10.1155/2017/7946123
    Background. Ocular bartonellosis can present in various ways, with variable visual outcome. There is limited data on ocular bartonellosis in Malaysia. Objective. We aim to describe the clinical presentation and visual outcome of ocular bartonellosis in Malaysia. Materials and Methods. This was a retrospective review of patients treated for ocular bartonellosis in two ophthalmology centers in Malaysia between January 2013 and December 2015. The diagnosis was based on clinical features, supported by a positive Bartonella spp. serology. Results. Of the 19 patients in our series, females were predominant (63.2%). The mean age was 29.3 years. The majority (63.2%) had unilateral involvement. Five patients (26.3%) had a history of contact with cats. Neuroretinitis was the most common presentation (62.5%). Azithromycin was the antibiotic of choice (42.1%). Concurrent systemic corticosteroids were used in approximately 60% of cases. The presenting visual acuity was worse than 6/18 in approximately 60% of eyes; on final review, 76.9% of eyes had a visual acuity better than 6/18. Conclusion. Ocular bartonellosis tends to present with neuroretinitis. Azithromycin is a viable option for treatment. Systemic corticosteroids may be considered in those with poor visual acuity on presentation.
    Matched MeSH terms: Azithromycin
  4. Takemori N, Ooi HK, Imai G, Saio M
    Trop Biomed, 2021 Sep 01;38(3):343-352.
    PMID: 34508342 DOI: 10.47665/tb.38.3.077
    Outbreak of SARS-CoV-2 has been declared a pandemic, which is a serious threat to human health. The disease was named coronavirus disease 2019 (COVID-19). Until now, several vaccines and a few drugs have been approved for the prevention and treatment for COVID-19. Recently, the effect of some macrolides including clarithromycin (CAM) on COVID-19 has attracted attention. CAM is known to have diverse effects including immunomodulatory and immunosuppressive effects, autophagy inhibition, steroid sparing effect, reversibility of drug resistance, antineoplastic effect, antiviral effect as well as bacteriostatic/bactericidal effect. Many patients with COVID-19 died due to an overwhelming response of their own immune system characterized by the uncontrolled release of circulating inflammatory cytokines (cytokine release syndrome [CRS]). This CRS plays a major role in progressing pneumonia to acute respiratory distress syndrome (ARDS) in COVID-19 patients. It is noteworthy that CAM can suppress inflammatory cytokines responsible for CRS and also has anti-SARS-CoV-2 effect. Considering the rapidly progressive global disease burden of COVID 19, the application of CAM for treating COVID-19 needs to be urgently evaluated. Recently, an open-labeled non-randomized trial using CAM for treating COVID-19 (ACHIEVE) was initiated in Greece in May, 2020. Its results, though preprint, indicated that CAM treatment of patients with moderate COVID-19 was associated with early clinical improvement and containment of viral load. Thus, treatment with CAM as a single agent or combined with other anti-SARS CoV-2 drugs should be tried for treating COVID-19. In this article, we discussed the significance and usefulness of CAM in treating COVID-19.
    Matched MeSH terms: Azithromycin/therapeutic use
  5. Shankar PR, Palaian S, Gulam SM
    J Pharm Bioallied Sci, 2020 10 06;13(1):4-10.
    PMID: 34084043 DOI: 10.4103/jpbs.JPBS_404_20
    The corona virus disease-19 (COVID-19) pandemic has affected the entire world causing huge economic losses and considerable morbidity and mortality. Considering the explosive growth of the pandemic repurposing existing medicines may be cost-effective and may be approved for use in COVID-19 faster. Researchers and medical practitioners worldwide have explored the use of chloroquine and hydroxychloroquine, in few occasions combined with the macrolide antibiotic azithromycin, for COVID-19 treatment. These two drugs are economic and easily available, and hence gained attention as a potential option for COVID-19 management. As per the available evidence, the outcomes of treatments with these medications are conflicting from both the efficacy and safety (predominantly cardiac related) perspectives. Currently, multiple studies are underway to test the safety and efficacy of these medications and more results are expected in the near future. The retina, the endocrine system (with risk of hypoglycemia), the musculoskeletal system, the hematological system, and the neurological system may also be affected. The use of these drugs is contraindicated in patients with arrhythmias, known hypersensitivity, and in patients on amiodarone. In addition to the published literature, personal communication with doctors treating COVID-19 patients seems to suggest the drugs may be effective in reducing symptoms and hastening clinical recovery. The literature evidence is still equivocal and further results are awaited. There has been recent controversy including retraction of articles published in prestigious journals about these medicines. Their low cost, long history of use, and easy availability are positive factors with regard to use of these drugs in COVID-19.
    Matched MeSH terms: Azithromycin
  6. Saniasiaya J, Kulasegarah J
    Ear Nose Throat J, 2020 Nov;99(9):597-598.
    PMID: 32744901 DOI: 10.1177/0145561320947255
    Matched MeSH terms: Azithromycin/adverse effects
  7. Saleem Z, Saeed H, Akbar Z, Saeed A, Khalid S, Farrukh L, et al.
    Cost Eff Resour Alloc, 2021 Feb 16;19(1):10.
    PMID: 33593366 DOI: 10.1186/s12962-021-00263-x
    BACKGROUND: Poor availability and unaffordability of key access antibiotics may increase antimicrobial resistance in the community by promoting inappropriate antibiotic selection and abridged therapy compliance.

    OBJECTIVE: To check the prices, availability, and affordability of the World Health Organization (WHO) key access antibiotics in private sector pharmacies of Lahore, Pakistan.

    METHODOLOGY: A survey of WHO key access antibiotics from WHO essential medicine list 2017 was conducted in private sector pharmacies of 4 different regions of Lahore employing adapted WHO/HAI methodology. The comparison of prices and availability between originator brands (OB) and lowest price generics (LPG) were conducted followed by the effect of medicine price differences on patient's affordability. The data were analyzed using a preprogrammed WHO Microsoft excel workbook.

    RESULTS: The mean availability of OB products was 45.20% and the availability of LPGs was 40.40%. The OBs of co-amoxiclav, clarithromycin and metronidazole and LPGs of azithromycin and ciprofloxacin were easily available (100%) in all private sector pharmacies. Whereas, antibiotics like chloramphenicol, cloxacillin, nitrofurantoin, spectinomycin, and cefazolin were totally unavailable in all the surveyed pharmacies. The OBs and LPGs with high MPRs were ceftriaxone (OB; 15.31, LPG; 6.38) and ciprofloxacin (OB; 12.42, LPG; 5.77). The median of brand premium obtained was 38.7%, which varied between the lowest brand premium of 3.97% for metronidazole and highest for ceftriaxone i.e. 140%. The cost of standard treatment was 0.5 day's wage (median) if using OB and 0.4 day's wage (median) for LPG, for a lowest paid unskilled government worker. Treatment with OB and LPG was unaffordable for ciprofloxacin (OB; 2.4, LPG; 1.1) & cefotaxime (OB; 12.7, LPG; 8.1).

    CONCLUSION: There is dire need to properly implement price control policies to better regulate fragile antibiotic supply system so that the availability of both OB and LPG of key access antibiotics should be increased. The prices could be reduced by improving purchasing efficiency, excluding taxes and regulating mark-ups. This could increase the affordability of patients to complete their antibiotic therapy with subsequent reduction in antimicrobial resistance.

    Matched MeSH terms: Azithromycin
  8. Rasmussen LD, Pedersen C, Madsen HD, Laursen CB
    BMJ Case Rep, 2017 Nov 29;2017.
    PMID: 29191821 DOI: 10.1136/bcr-2017-221025
    A 36-year-old Danish man, living in Asia, was diagnosed with Pneumocystis pneumonia (PCP) and HIV in 2013 (CD4+ count: 6 cells/µL; viral load: 518 000 copies/mL). He initiated combination antiretroviral therapy. Later that year, he was also diagnosed with granulomatosis with polyangiitis and was treated with prednisolone. Despite complete viral suppression and increasing CD4+ count (162 cells/µL), he was readmitted with PCP in April 2015. Subsequently, he returned to Denmark (CD4+ count: 80 cells/µL, viral suppression). Over the following months, he developed progressive dyspnoea. Lung function tests demonstrated severely reduced lung capacity with an obstructive pattern and a moderately reduced diffusion capacity. High resolution computer tomography revealed minor areas with tree-in-bud pattern and no signs of air trapping on expiratory views. Lung biopsy showed lymphocytic infiltration surrounding the bronchioles with sparing of the alveolar septa. He was diagnosed with follicular bronchiolitis. The patient spontaneously recovered along with an improvement of the immune system.
    Matched MeSH terms: Azithromycin/administration & dosage; Azithromycin/therapeutic use
  9. Rahman MT
    J Herb Med, 2020 Oct;23:100382.
    PMID: 32834942 DOI: 10.1016/j.hermed.2020.100382
    An effective vaccine to prevent the SARS-CoV-2 causing COVID-19 is yet to be approved. Further there is no drug that is specific to treat COVID-19. A number of antiviral drugs such as Ribavirin, Remdesivir, Lopinavir/ritonavir, Azithromycin and Doxycycline have been recommended or are being used to treat COVID-19 patients. In addition to these drugs, rationale and evidence have been presented to use chloroquine to treat COVID-19, arguably with certain precautions and criticism. In line with the proposed use of chloroquine, Nigella sativa (black seed) could be considered as a natural substitute that contains a number of bioactive components such as thymoquinone, dithymoquinone, thymohydroquinone, and nigellimine. Further benefits to use N. sativa could be augmented by Zn supplement. Notably, Zn has been proven to improve innate and adaptive immunity in the course of any infection, be it by pathogenic virus or bacteria. The effectiveness of the Zn salt supplement could also be enhanced with N. sativa as its major bioactive component might work as ionophore to allow Zn2+ to enter pneumocytes - the target cell for SARSCoV-2. Given those benefits, this review paper describes how N. sativa in combination with Zn could be useful as a complement to COVID-19 treatment.
    Matched MeSH terms: Azithromycin
  10. Omeershffudin UNM, Kumar S
    Arch Microbiol, 2023 Sep 09;205(10):330.
    PMID: 37688619 DOI: 10.1007/s00203-023-03663-0
    The continuous rise of antimicrobial resistance (AMR) is a serious concern as it endangers the effectiveness of healthcare interventions that rely on antibiotics in the long run. The increasing resistance of Neisseria gonorrhoeae, the bacteria responsible for causing gonorrhea, to commonly used antimicrobial drugs, is a major concern. This has now become a critical global health crisis. In the coming years, there is a risk of a hidden epidemic caused by the emergence of gonococcal AMR. This will worsen the global situation. Infections caused by N. gonorrhoeae were once considered easily treatable. However, over time, they have become increasingly resistant to commonly used therapeutic medications, such as penicillin, ciprofloxacin, and azithromycin. As a result, this pathogen is developing into a true "superbug," which means that ceftriaxone is now the only available option for initial empirical treatment. Effective management strategies are urgently needed to prevent severe consequences, such as infertility and pelvic inflammatory disease, which can result from delayed intervention. This review provides a thorough analysis of the escalating problem of N. gonorrhoeae, including its pathogenesis, current treatment options, the emergence of drug-resistant mechanisms, and the potential for vaccine development. We aim to provide valuable insights for healthcare practitioners, policymakers, and researchers in their efforts to combat N. gonorrhoeae antibiotic resistance by elucidating the multifaceted aspects of this global challenge.
    Matched MeSH terms: Azithromycin
  11. Mustapha NA, Hu A, Yu CP, Sharuddin SS, Ramli N, Shirai Y, et al.
    Appl Microbiol Biotechnol, 2018 Jun;102(12):5323-5334.
    PMID: 29696331 DOI: 10.1007/s00253-018-9003-8
    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.
    Matched MeSH terms: Azithromycin
  12. Mustafa ZU, Saleem MS, Ikram MN, Salman M, Butt SA, Khan S, et al.
    Pathog Glob Health, 2022 10;116(7):421-427.
    PMID: 34783630 DOI: 10.1080/20477724.2021.1999716
    There are reports of high rates of antibiotic prescribing among hospitalized patients with COVID-19 around the world. To date, however, there are few reports of prescribing in relation to COVID-19 in Pakistan. Herein, we describe a point prevalence survey of antibiotic prescribing amongst patients hospitalized with suspected or proven COVID-19 in Pakistan. A Point Prevalence Survey (PPS) was undertaken in seven tertiary care health facilities in Punjab Provence, Pakistan. Baseline information about antimicrobial use according to the World Health Organization (WHO) standardized methodology was collected on a single day between 5th and 30 April 2021. A total of 617 patients' records were reviewed and 578 (97.3%) were documented to be receiving an antibiotic on the day of the survey. The majority (84.9%) were COVID-19 PCR positive, 61.1% were male and 34.9% were age 36 to 44 years. One quarter presented with severe disease, and cardiovascular disease was the major comorbidity in 13%. Secondary bacterial infection or co-infection (bacterial infection concurrent with COVID-19) was identified in only 1.4%. On the day of the survey, a mean of 1.7 antibiotics was prescribed per patient and 85.4% antibiotics were recorded as being prescribed for 'prophylaxis'. The most frequently prescribed antibiotics were azithromycin (35.6%), ceftriaxone (32.9%) and meropenem (7.6%). The majority (96.3%) of the antibiotics were empirical and all were from WHO Watch or Reserve categories. Overall, a very high consumption of antibiotics in patients hospitalized with suspected or proven COVID-19 was observed in Pakistan and this is concerning in view of already high rates of antimicrobial resistance in the region. Antimicrobial stewardship programs need to urgently address unnecessary prescribing in the context of COVID-19 infection.
    Matched MeSH terms: Azithromycin/therapeutic use
  13. Mandhane PJ, Paredes Zambrano de Silbernagel P, Aung YN, Williamson J, Lee BE, Spier S, et al.
    PLoS One, 2017;12(8):e0182411.
    PMID: 28771627 DOI: 10.1371/journal.pone.0182411
    BACKGROUND: Antibiotics are frequently used to treat wheezing children. Macrolides may be effective in treating bronchiolitis and asthma.

    METHOD: We completed a prospective, double-blinded, randomized placebo-control trial of azithromycin among pre-school children (12 to 60 months of age) presenting to the emergency department with wheeze. Patients were randomized to receive either five days of azithromycin or placebo. Primary outcome was time to resolution of respiratory symptoms after treatment initiation. Secondary outcomes included the number of days children used a Short-Acting Beta-Agonists during the 21 day follow-up and time to disease exacerbation during the following six months (unscheduled health care visit or treatment with an oral corticosteroid for acute respiratory symptoms).

    RESULTS: Of the 300 wheezing children recruited, 222 and 169 were analyzed for the primary and secondary outcomes, respectively. The treatment groups had similar demographics and clinical parameters at baseline. Median time to resolution of respiratory symptoms was four days for both treatment arms (interquartile range (IQR) 3,6; p = 0.28). Median number of days of Short-Acting Beta-Agonist use among those who received azithromycin was four and a half days (IQR 2, 7) and five days (IQR 2, 9; p = 0.22) among those who received placebo. Participants who received azithromycin had a 0.91 hazard ratio for time to six-month exacerbation compared to placebo (95% CI 0.61, 1.36, p = 0.65). A pre-determined subgroup analysis showed no differences in outcomes for children with their first or repeat episode of wheezing. There was no significant difference in the proportion of participants experiencing an adverse event.

    CONCLUSION: Azithromycin neither reduced duration of respiratory symptoms nor time to respiratory exacerbation in the following six months after treatment among wheezing preschool children presenting to an emergency department. There was no significant effect among children with either first-time or prior wheezing.

    Matched MeSH terms: Azithromycin/therapeutic use*
  14. Lourdesamy Anthony AI, Muthukumaru U
    Respirology, 2014 Nov;19(8):1178-82.
    PMID: 25183304 DOI: 10.1111/resp.12375
    We evaluated the efficacy of a 12-week oral treatment with azithromycin in adult patients with bronchiectasis. The objectives were to demonstrate that this treatment reduces sputum volume, improves quality of life and to assess the lengths of effects after cessation of therapy.
    Matched MeSH terms: Azithromycin/administration & dosage*
  15. Lim SYM, Al Bishtawi B, Lim W
    Eur J Drug Metab Pharmacokinet, 2023 May;48(3):221-240.
    PMID: 37093458 DOI: 10.1007/s13318-023-00826-8
    The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.
    Matched MeSH terms: Azithromycin
  16. Kow CS, Hasan SS
    Clin Microbiol Infect, 2021 01;27(1):136-137.
    PMID: 33007473 DOI: 10.1016/j.cmi.2020.09.047
    Matched MeSH terms: Azithromycin*
  17. Kow CS, Hasan SS
    Clin Drug Investig, 2020 10;40(10):989-990.
    PMID: 32816219 DOI: 10.1007/s40261-020-00961-z
    Matched MeSH terms: Azithromycin*
  18. Khairidzan, M.K.
    MyJurnal
    Replacement therapy for toxoplasmosis was not a clear-cut choice since most of anti-parasitic agents available are also associated with Steven Johnson Syndrome. Further more the therapy has to be effective to control infection, which was previously achieved by oral Fansidar in this patient. Oral Azithromycin was seen as a drug of choice for these reasons. Corticosteroids were maintained since it was relatively indicated in both toxoplasmosis and SJS. Both conditions can results in visual impairment. SJS can be a life threathening condition and its ocular complications include conjunctivitis, ectropion or entropion, symblepharon, vascularization of the cornea, chronic dry eyes, and ankylosymblepharon. Proper management in dealing with both diseases is mandatory in order to prevent mortality and minimize the ocular complications. It has been shown in this case that the challenging part in managing patient with both diseases is to balance out between prevention of fatal consequences and the need control to the infection and preserving vision. Decisions on medical treatment for both conditions will remain controversial till reliable prospective randomized control trials are done to address the issues
    Matched MeSH terms: Azithromycin
  19. Juzaily Husain
    MyJurnal
    The development of treatment strategies for periodontitis that maximise the
    effectiveness of antibiotics is highly desirable. Azithromycin is proving to be an effective antibiotic
    for treatment of refractory periodontitis which works by binding to the outer membrane of Gramnegative bacteria and subsequently inhibits protein synthesis. Lactoferrin is a membrane-active
    host antimicrobial protein and so the objective of this study was to determine whether the effect
    of azithromycin (AZM) against example periodontopathogens (Porphyromonas gingivalis and
    Tannerella forsythia) could be potentiated by lactoferrin. (Copied from article).
    Matched MeSH terms: Azithromycin
  20. Jamaludin N, Gedye K, Collins-Emerson J, Benschop J, Nulsen M
    Microb Drug Resist, 2019 Sep;25(7):1003-1011.
    PMID: 31021281 DOI: 10.1089/mdr.2018.0111
    Aim:
    To characterize mutations in penA, mtrR, ponA, and porBIB, considered target genes for antimicrobial resistance, in Neisseria gonorrhoeae isolates with elevated minimum inhibitory concentrations (MICs) of ceftriaxone cultured from patients in New Zealand.
    Results:
    Out of 28 isolates supplied by the Institute of Environmental Science and Research Limited (ESR), Porirua, New Zealand, 14 were found to show reduced susceptibility to ceftriaxone (MIC of 0.06 mg/L) according to criteria used by the ESR and the Australian Gonococcal Surveillance Programme (AGSP) when tested in our laboratory. Rates of resistance to ciprofloxacin, azithromycin, penicillin, and tetracycline were 100% (28/28), 7% (2/28), 36% (10/28), and 25% (7/28), respectively. Ten different penA (Penicillin binding protein 2 [PBP2]) sequences were observed. The most common mosaic penA M-1 resembled mosaic penA XXXIV, which has been associated with ceftriaxone treatment failures in other countries. Four semimosaic PBP2 sequences were observed and may be novel PBP sequences, while four out of five nonmosaic PBP2 sequences were similar to PBP2 sequences reported in Australia. Twenty-one isolates harbored mutations in all 4 genes (penA, mtrR, porBIB, and ponA), and 13 of these exhibited reduced susceptibility to ceftriaxone.
    Conclusion:
    Mutations in penA, mtrR, porBIB, and ponA observed in this study may have contributed to reduced susceptibility to ceftriaxone among New Zealand gonococcal isolates. Over half (16/22) of mosaic penA sequences from the gonococcal isolates resembled penA XXXIV.
    Matched MeSH terms: Azithromycin/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links