Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA
    J Hazard Mater, 2007 Sep 5;148(1-2):164-71.
    PMID: 17368716
    Acinetobacter haemolyticus, a Gram-negative aerobic locally isolated bacterium, immobilized on wood-husk showed the ability to detoxify Cr(VI) to Cr(III). Wood-husk, a natural cellulose-based support material, packed in an upward-flow column was used as support material for bacterial attachment. Around 97% of the Cr(VI) in wastewater containing 15 mg L(-1) of Cr(VI) was reduced at a flow rate of 8.0 mL min(-1). The wastewater containing Cr(VI) was added with liquid pineapple wastewater as nutrient source for the bacteria. Electron microscopic examinations of the wood-husk after 42 days of column operation showed gradual colonization of the wood-husk by bacterial biofilm. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited growth of bacteria present in the final wastewater discharge. This finding is important in view of the ethical code regarding possible introduction of exogenous bacterial species into the environment.
    Matched MeSH terms: Bacterial Adhesion
  2. Yong YY, Ong MWK, Dykes G, Choo WS
    FEMS Microbiol Lett, 2021 01 26;368(1).
    PMID: 33338235 DOI: 10.1093/femsle/fnaa214
    Staphylococcus aureus and Pseudomonas aeruginosa are bacteria that cause biofilm-associated infections. The aim of this study was to determine the activity of combined betacyanin fractions from Amaranthus dubius (red spinach) and Hylocereus polyrhizus (red pitahaya) against biofilms formed by co-culture of S. aureus and P. aeruginosa on different polymer surfaces. Various formulations containing different concentrations of the betacyanin fractions were investigated for biofilm-inhibiting activity on polystyrene surfaces using crystal violet assay and scanning electron microscopy. A combination of each betacyanin fraction (0.625 mg mL-1) reduced biofilm formation of five S. aureus strains and four P. aeruginosa strains from optical density values of 1.24-3.84 and 1.25-3.52 to 0.81-2.63 and 0.80-1.71, respectively. These combined fractions also significantly inhibited dual-species biofilms by 2.30 and reduced 1.0-1.3 log CFU cm-2 bacterial attachment on polymer surfaces such as polyvinyl chloride, polyethylene, polypropylene and silicone rubber. This study demonstrated an increase in biofilm-inhibiting activity against biofilms formed by two species using combined fractions than that by using single fractions. Betacyanins found in different plants could collectively be used to potentially decrease the risk of biofilm-associated infections caused by these bacteria on hydrophobic polymers.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  3. Yeo SK, Ong JS, Liong MT
    Appl Biochem Biotechnol, 2014 Oct;174(4):1496-1509.
    PMID: 25119552 DOI: 10.1007/s12010-014-1141-6
    This study aimed to evaluate the effects of electroporation on growth, bioconversion of isoflavones, and probiotic properties of parent organisms and subsequent passages of Bifidobacterium longum FTDC 8643. Electroporation with the strength of electric field at 7.5 kV cm(-1) for 3.5 ms was applied on B. longum FTDC 8643. The viability of B. longum FTDC 8643 increased significantly upon treatment with electroporation. Such treatment also enhanced the intracellular and extracellular β-glucosidase activity, leading to enhanced production of bioactive isoflavone aglycones in mannitol-soymilk (P 
    Matched MeSH terms: Bacterial Adhesion/drug effects
  4. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2012 Nov;63(7):821-31.
    PMID: 22264088 DOI: 10.3109/09637486.2011.652942
    The objective of this study was to evaluate the effects of ultraviolet (UV) radiation (UVB; 90 J/m²) on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of L. casei FTDC 2113. UV radiation significantly enhanced (P < 0.05) the growth of parent cells in mannitol-soymilk fermented at 37°C for 24 h. This had led to an enhanced intracellular and extracellular β-glucosidase activity with a subsequent increase in bioconversion of isoflavones in mannitol-soymilk (P < 0.05). UV radiation also promoted (P < 0.05) the tolerance of parent cells towards acidic condition (pH 2 and 3) and intestinal bile salts (oxgall, taurocholic and cholic acid). In addition, parent treated cells also exhibited better (P < 0.05) adhesion ability to mucin and antimicrobial activity compared to that of the control. All these positive effects of UV radiation were only prevalent in the parent cells without inheritance by first, second and third passage of cells. Although temporary, our results suggested that UV radiation could enhance the bioactive and probiotic potentials of L. casei FTDC 2113, and thus could be applied for the production of probiotic products with enhanced bioactivity.
    Matched MeSH terms: Bacterial Adhesion
  5. Wu XH, Liew YK, Mai CW, Then YY
    Int J Mol Sci, 2021 Mar 24;22(7).
    PMID: 33805207 DOI: 10.3390/ijms22073341
    Medical devices are indispensable in the healthcare setting, ranging from diagnostic tools to therapeutic instruments, and even supporting equipment. However, these medical devices may be associated with life-threatening complications when exposed to blood. To date, medical device-related infections have been a major drawback causing high mortality. Device-induced hemolysis, albeit often neglected, results in negative impacts, including thrombotic events. Various strategies have been approached to overcome these issues, but the outcomes are yet to be considered as successful. Recently, superhydrophobic materials or coatings have been brought to attention in various fields. Superhydrophobic surfaces are proposed to be ideal blood-compatible biomaterials attributed to their beneficial characteristics. Reports have substantiated the blood repellence of a superhydrophobic surface, which helps to prevent damage on blood cells upon cell-surface interaction, thereby alleviating subsequent complications. The anti-biofouling effect of superhydrophobic surfaces is also desired in medical devices as it resists the adhesion of organic substances, such as blood cells and microorganisms. In this review, we will focus on the discussion about the potential contribution of superhydrophobic surfaces on enhancing the hemocompatibility of blood-contacting medical devices.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  6. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Bacterial Adhesion/drug effects*
  7. Wang Y, Lee SM, Dykes GA
    Biofouling, 2013;29(3):307-18.
    PMID: 23528127 DOI: 10.1080/08927014.2013.774377
    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  8. Wang Y, Lee SM, Gentle IR, Dykes GA
    Biofouling, 2020 11;36(10):1227-1242.
    PMID: 33412938 DOI: 10.1080/08927014.2020.1865934
    A statistical approach using a polynomial linear model in combination with a probability distribution model was developed to mathematically represent the process of bacterial attachment and study its mechanism. The linear deterministic model was built based on data from experiments investigating bacterial and substratum surface physico-chemical factors as predictors of attachment. The prediction results were applied to a normal-approximated binomial distribution model to probabilistically predict attachment. The experimental protocol used mixtures of Streptococcus salivarius and Escherichia coli, and mixtures of porous poly(butyl methacrylate-co-ethyl dimethacrylate) and aluminum sec-butoxide coatings, at varying ratios, to allow bacterial attachment to substratum surfaces across a range of physico-chemical properties (including the surface hydrophobicity of bacterial cells and the substratum, the surface charge of the cells and the substratum, the substratum surface roughness and cell size). The model was tested using data from independent experiments. The model indicated that hydrophobic interaction was the most important predictor while reciprocal interactions existed between some of the factors. More importantly, the model established a range for each factor within which the resultant attachment is unpredictable. This model, however, considers bacterial cells as colloidal particles and accounts only for the essential physico-chemical attributes of the bacterial cells and substratum surfaces. It is therefore limited by a lack of consideration of biological and environmental factors. This makes the model applicable only to specific environments and potentially provides a direction to future modelling for different environments.
    Matched MeSH terms: Bacterial Adhesion
  9. Wan Dagang WR, Bowen J, O'Keeffe J, Robbins PT, Zhang Z
    Biotechnol Lett, 2016 May;38(5):787-92.
    PMID: 26892223 DOI: 10.1007/s10529-016-2047-x
    The adhesion of colloidal probes of stainless steel, glass and cellulose to Pseudomonas fluorescens biofilms was examined using atomic force microscopy (AFM) to allow comparisons between surfaces to which biofilms might adhere.
    Matched MeSH terms: Bacterial Adhesion
  10. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK
    Proc Inst Mech Eng H, 2014 Oct;228(10):1083-99.
    PMID: 25406229 DOI: 10.1177/0954411914556137
    Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants.
    Matched MeSH terms: Bacterial Adhesion/drug effects; Bacterial Adhesion/physiology*
  11. Uyub AM, Anuar AK
    PMID: 11485102
    A study was carried out on 49 H. pylori-positive and 11 H. pylori-negative patients to determine the reactivity of peripheral blood lymphocytes (PBL) to phytohemagglutinin (PHA) and acid glycine extract (AGE) of H. pylori, and to identify cells responsible for imunosuppression. Based on response to PHA stimulation, cell-mediated immunity of all patients were competent. In some patients, however, response to AGE of H. pylori was suppressed by plastic adherent cells. This study provided evidence of the presence of plastic adherent suppressor cells which suppressed PBL response to AGE of H. pylori but not to PHA suggesting that immunosuppression is antigen specific. There is also an indication that immunosuppression may be species-specific as PBL devoid of plastic adherent cells only responded to stimulation by AGE of H. pylori but not that to AGE of C. jejuni.
    Matched MeSH terms: Bacterial Adhesion*
  12. Toh YS, Yeoh SL, Yap IKS, Teh CSJ, Win TT, Thong KL, et al.
    Med Microbiol Immunol, 2019 Dec;208(6):793-809.
    PMID: 31263955 DOI: 10.1007/s00430-019-00628-3
    Cholera is an acute diarrheal illness caused by the Gram-negative bacterium Vibrio cholerae. The pathogen is known for its ability to form biofilm that confers protection against harsh environmental condition and as part of the colonisation process during infection. Coaggregation is a process that facilitates the formation of biofilm. In a preliminary in vitro study, high coaggregation index and biofilm production were found between V. cholerae with human commensals namely Escherichia coli and Enterobacter cloacae. Building upon these results, the effects of coaggregation were further evaluated using adult BALB/c mouse model. The animal study showed no significant differences in mortality and fluid accumulation ratio between treatment groups infected with V. cholerae alone and those infected with coaggregation partnership (V. cholerae with E. coli or V. cholerae with E. cloacae). However, mild inflammation was detected in both partnering pairs. Higher density of V. cholerae was recovered from faecal samples of mice co-infected with E. coli and V. cholerae in comparison with other groups at 24 h post-infection. This partnership also elicited slightly higher levels of interleukin-5 (IL-5) and interleukin-10 (IL-10). Nonetheless, the involvement of autoinducer-2 (AI-2) as the signalling molecules in quorum sensing system is not evident in this study. Since E. coli is one of the common commensals, our result may suggest the involvement of commensals in cholera development.
    Matched MeSH terms: Bacterial Adhesion*
  13. Teh AHT, Lee SM, Dykes GA
    PLoS One, 2019;14(4):e0215275.
    PMID: 30970009 DOI: 10.1371/journal.pone.0215275
    Campylobacter jejuni is a microaerophilic bacterial species which is a major food-borne pathogen worldwide. Attachment and biofilm formation have been suggested to contribute to the survival of this fastidious bacteria in the environment. In this study the attachment of three C. jejuni strains (C. jejuni strains 2868 and 2871 isolated from poultry and ATCC 33291) to different abiotic surfaces (stainless steel, glass and polystyrene) alone or with Pseudomonas aeruginosa biofilms on them, in air at 25°C and under static or flow conditions, were investigated using a modified Robbins Device. Bacteria were enumerated and scanning electron microscopy was carried out. The results indicated that both C. jejuni strains isolated from poultry attached better to Pseudomonas aeruginosa biofilms on abiotic surfaces than to the surfaces alone under the different conditions tested. This suggests that biofilms of other bacterial species may passively protect C. jejuni against shear forces and potentially oxygen stress which then contribute to their persistence in environments which are detrimental to them. By contrast the C. jejuni ATCC 33291 strain did not attach differentially to P. aeruginosa biofilms, suggesting that different C. jejuni strains may have alternative strategies for persistence in the environment. This study supports the hypothesis that C. jejuni do not form biofilms per se under conditions they encounter in the environment but simply attach to surfaces or biofilms of other species.
    Matched MeSH terms: Bacterial Adhesion/physiology*
  14. Teh AH, Lee SM, Dykes GA
    Curr Microbiol, 2016 Dec;73(6):859-866.
    PMID: 27623781
    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P 
    Matched MeSH terms: Bacterial Adhesion
  15. Tay ST, Devi S, Puthucheary S, Kautner I
    Zentralbl. Bakteriol., 1996 Mar;283(3):306-13.
    PMID: 8861868
    By means of the gentamicin HEp-2 cell invasion assay, it was demonstrated that 82% of the Campylobacters tested were cell-invasive, including 83% of isolates from bloody diarrhoea and 80% of isolates from watery diarrhoea. The large number of invasive strains from watery diarrhoea suggests the possible role of invasiveness in the production of watery diarrhoea. Whether this stage can progress further to more severe symptoms such as bloody diarrhoea remains to be elucidated. Whether this progression to bloody diarrhoea occurs as a result of toxin production is still debatable. In Vero cells, invasion was less efficient and intracellular multiplication was not observed.
    Matched MeSH terms: Bacterial Adhesion
  16. Tan MSF, Rahman S, Dykes GA
    Food Microbiol, 2017 Apr;62:62-67.
    PMID: 27889167 DOI: 10.1016/j.fm.2016.10.009
    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm2) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.
    Matched MeSH terms: Bacterial Adhesion*
  17. Tan MS, Wang Y, Dykes GA
    Foodborne Pathog Dis, 2013 Nov;10(11):992-4.
    PMID: 23941519 DOI: 10.1089/fpd.2013.1536
    This study aimed to establish, as a proof of concept, whether bacterial cellulose (BC)-derived plant cell wall models could be used to investigate foodborne bacterial pathogen attachment. Attachment of two strains each of Salmonella enterica and Listeria monocytogenes to four BC-derived plant cell wall models (namely, BC, BC-pectin [BCP], BC-xyloglucan [BCX], and BC-pectin-xyloglucan [BCPX]) was investigated. Chemical analysis indicated that the BCPX composite (31% cellulose, 45.6% pectin, 23.4% xyloglucan) had a composition typical of plant cell walls. The Salmonella strains attached in significantly (p<0.05) higher numbers (~6 log colony-forming units [CFU]/cm(2)) to the composites than the Listeria strains (~5 log CFU/cm(2)). Strain-specific differences were also apparent with one Salmonella strain, for example, attaching in significantly (p<0.05) higher numbers to the BCX composite than to the other composites. This study highlights the potential usefulness of these composites to understand attachment of foodborne bacteria to fresh produce.
    Matched MeSH terms: Bacterial Adhesion*
  18. Tan MS, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA
    BMC Microbiol, 2016 09 15;16:212.
    PMID: 27629769 DOI: 10.1186/s12866-016-0832-2
    BACKGROUND: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface.

    RESULTS: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin.

    CONCLUSIONS: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

    Matched MeSH terms: Bacterial Adhesion*
  19. Tan MS, White AP, Rahman S, Dykes GA
    PLoS One, 2016;11(6):e0158311.
    PMID: 27355584 DOI: 10.1371/journal.pone.0158311
    Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD) to bacterial cellulose (BC)-based plant cell wall models [BC-Pectin (BCP), BC-Xyloglucan (BCX) and BC-Pectin-Xyloglucan (BCPX)] after growth at different temperatures (28°C and 37°C). We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2) although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.
    Matched MeSH terms: Bacterial Adhesion*
  20. Tan MS, Rahman S, Dykes GA
    Appl Environ Microbiol, 2016 01 15;82(2):680-8.
    PMID: 26567310 DOI: 10.1128/AEM.02609-15
    Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose cell walls are particularly vulnerable. Little is known about the roles that different structural components (cellulose, pectin, and xyloglucan) of plant cell walls play in the attachment of foodborne bacterial pathogens. Using bacterial cellulose-derived plant cell wall models, we showed that the presence of pectin alone or xyloglucan alone affected the attachment of three Salmonella enterica strains (Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028, and Salmonella enterica subsp. indica M4) and Listeria monocytogenes ATCC 7644. In addition, we showed that this effect was modulated in the presence of both polysaccharides. Assays using pairwise combinations of S. Typhimurium ATCC 14028 and L. monocytogenes ATCC 7644 showed that bacterial attachment to all plant cell wall models was dependent on the characteristics of the individual bacterial strains and was not directly proportional to the initial concentration of the bacterial inoculum. This work showed that bacterial attachment was not determined directly by the plant cell wall model or bacterial physicochemical properties. We suggest that attachment of the Salmonella strains may be influenced by the effects of these polysaccharides on physical and structural properties of the plant cell wall model. Our findings improve the understanding of how Salmonella enterica and Listeria monocytogenes attach to plant cell walls, which may facilitate the development of better ways to prevent the attachment of these pathogens to such surfaces.
    Matched MeSH terms: Bacterial Adhesion*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links