Displaying publications 1 - 20 of 318 in total

Abstract:
Sort:
  1. Abdul-Rahman R, Tsuno H, Zainol N
    Water Sci Technol, 2002;45(12):197-204.
    PMID: 12201103
    Elevated levels of nutrients in agroindustry wastewaters, and higher reliance on chlorination pose health threats due to formation of chlorinated organics as well as increased chlorination costs. Removals of ammonium and nitrate compounds were studied using activated carbon from palm shells, as adsorbent and support media. Experiments were carried out at several loadings, F:M from 0.31 to 0.58, and hydraulic residence times (HRT) of 24 h, 12 h and 8 h. Results show that the wastewater treatment process achieved removals of over 90% for COD and 62% for Total-N. Studies on removals from river water were carried out in sequencing batch reactor (SBR) and activated carbon biofilm (ACB) reactor. Removals achieved by the SBR adsorption-biodegradation combination were 67.0% for COD, 58.8% for NH3-N and 25.5% for NO3-N while for adsorption alone the removals were only 37.0% for COD, 35.2% for NH3-N and 13.8% for NO3-N. In the ACB reactor, at HRT of 1.5 to 6 h, removals ranged from 12.5 to 100% for COD, 16.7 to 100% for NO3-N and 13.5 to 100% for NH3-N. Significant decrease in removals was shown at lower HRT. The studies have shown that substantial removals of COD, NO3-N and NH3-N from both wastewater and river water may be achieved via adsorption-biodegradation by biofilm on activated carbon processes.
    Matched MeSH terms: Biofilms
  2. Ujang Z, Ng SS, Nagaoka H
    Water Sci Technol, 2005;51(10):335-42.
    PMID: 16104438
    Biofouling control is important for effective process of membrane bioreactor (MBR). In this study, phenomena of biofouling for immersed type extended aeration MBR with two different anti-fouling aeration intensities were studied through a laboratory set up. The objectives of this study were (a) to observe biofouling phenomena of MBR that operates under different anti-fouling bubbling intensity, and simultaneously monitors performance of the MBR in organic carbon and nutrients removal; (b) to compare effectiveness of detergent and detergent-enzyme cleaning solutions in recovering biofouled membranes that operated in the extended aeration MBR. For MBR, which operated under continuous anti-fouling aeration, deposition and accumulation of suspended biomass on membrane surface were prohibited. However, flux loss was inescapable that biofilm layer was the main problem. Membrane cleaning was successfully carried out with detergent-enzyme mixture solutions and its effectiveness was compared with result from cleaning with just detergent solution.
    Matched MeSH terms: Biofilms/growth & development*
  3. Chai WL, Hamimah H, Cheng SC, Sallam AA, Abdullah M
    J Oral Sci, 2007 Jun;49(2):161-6.
    PMID: 17634730
    The purpose of this study was to investigate the antimicrobial efficacy of six groups of antibiotics and calcium hydroxide against Enterococcus faecalis biofilm in a membrane filter model. Two-day-old E. faecalis (ATCC 29212) biofilm was exposed to ampicillin, co-trimoxazole, erythr omycin, oxytetracycline, vancomycin, vancomycin followed by gentamicin, Ca(OH)(2), and phosphate-buffered saline (control). After 1 h of exposure, the antimicrobial activity was neutralized by washing each disc five times in PBS, and then the colony-forming units of the remaining viable bacteria on each disc were counted. The results revealed that only erythromycin, oxytetracycline and Ca(OH)2 showed 100% biofilm kill. An ANOVA with a Bonferroni post hoc test (P < 0.05) detected significant differences among the test agents, except in the ampicillin group versus the co-trimoxazole group. It is concluded that erythromycin, oxytetracycline and Ca(OH)2 are 100% effective in eliminating E. faecalis biofilm, whereas ampicillin, co-trimoxazole, vancomycin, and vancomycin followed by gentamicin are ineffective.
    Matched MeSH terms: Biofilms/drug effects*
  4. Maizura M, Fazilah A, Norziah MH, Karim AA
    J Food Sci, 2007 Aug;72(6):C324-30.
    PMID: 17995673
    Edible films were prepared from a mixture of partially hydrolyzed sago starch and alginate (SA). Lemongrass oil (0.1% to 0.4%, v/w) and glycerol (0% and 20%, w/w) were incorporated in the films to act as natural antimicrobial agent and plasticizer, respectively. The films were characterized for antimicrobial activity, water vapor permeability (WVP), tensile strength (TS), percent elongation at break (%E), and water solubility (WS). Fourier transform infrared (FTIR) spectroscopy was conducted to determine functional group interactions between the matrix and lemongrass oil. The zone of inhibition was increased significantly (P < 0.05) by addition of lemongrass oil at all levels in the presence and the absence of glycerol. This indicates that the film containing lemongrass oil was effective against Escherichia coli O157:H7 at all levels. In the absence of glycerol, the tensile strength of film decreased as the oil content increased, but there was no significant (P > 0.05) difference in percent elongation. The percent elongation at break and WVP values for film with 20% glycerol was found to be increased significantly (P < 0.05) with an increase in lemongrass oil content. Addition of lemongrass oil did not have any interaction with the functional groups of films as measured by FTIR.
    Matched MeSH terms: Biofilms
  5. Nor Adinar Baharuddin
    Malaysian Dental Journal, 2007;28(2):97-98.
    MyJurnal
    There are evidences that chronic oral infections are associated with cardiovascular disease (CVD). Periodontal disease is a common, mixed oral infection affecting the supporting structures around the teeth. It was reported that 75% of the adult population has gingivitis and 20% to 30% exhibits the severe destructive form of periodontitis. Although more than 500 bacterial species inhabit the human oral cavity, only a few Gram negative bacteria such as Prevotella intermedia, Fusobacterium nucleatum, Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola and Actinobacillus actinomycetamcomitans causes gingivitis and periodontitis. These periodontal pathogen occupy the subgingival space and organize as a bacterial biofilm. The bacterial biofilm will be in direct contact with host tissues along an ulcerated epithelial interface, called periodontal pocket. The break in the epithelial integrity directly exposes the host to bacteria and their products eg. lipopolysaccharide (LPS) endotoxin. (Copied from article).
    Matched MeSH terms: Biofilms
  6. Nuryastuti T, Henny C, Henk JB, Roel K, Abu TA, Bastiaan PK
    Med J Malaysia, 2008 Jul;63 Suppl A:97.
    PMID: 19025002
    Phenotypic variation in biofilm formation is common in clinical isolates of S. epidermidis. In the current study, nearly 5% of all clinical isolates analysed showed phenotypic variation in biofilm forming ability and electrophoretic mobility (EM). This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC genes which represents a new, possibly common mechanism of phenotypic variation.
    Matched MeSH terms: Biofilms
  7. Au LF, Othman F, Mustaffa R, Vidyadaran S, Rahmat A, Besar I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:16-7.
    PMID: 19024962
    Biofilms are adherent, multi-layered colonies of bacteria that are typically more resistant to the host immune response and routine antibiotic therapy. HA biomaterial comprises of a single-phased hydroxyapatite scaffold with interconnected pore structure. The device is designed as osteoconductive space filler to be gently packed into bony voids or gaps following tooth extraction or any surgical procedure. Gentamycin-coated biomaterial (locally made hydroxyapatite) was evaluated to reduce or eradicate the biofilm on the implant materials. The results indicated that the HA coated with gentamycin was biocompatible to human osteoblast cell line and the biofilm has been reduced after being treated with different concentrations of gentamycin-coated hydroxyapatite (HA).
    Matched MeSH terms: Biofilms*
  8. Suja F, Donnelly T
    Water Sci Technol, 2008;58(5):977-83.
    PMID: 18824794 DOI: 10.2166/wst.2008.454
    A comparative study to explore the characteristics of partially and fully packed biological aerated filters (BAFs) in the removal of carbon pollutant, reveals that the partial-bed reactor can perform comparably well with the full-bed reactor. The organic removal rate was 5.34 kg COD m(-3) d(-1) at Organic Loading Rates (OLR) 5.80+/-0.31 kg COD m(-3) d(-1) for the full-bed, and 5.22 kg COD m(-3) d(-1) at OLR 5.79+/-0.29 kg COD m(-3) d(-1) for the partial-bed. In the partial-bed system, where the masses of biomass were only 41-51% of those of the full-bed, the maximum carbon removal limit was still between 5 to 6 kg COD m(-3) d(-1). At organic loadings above 5.0 kg COD m(-3) d(-1), the carbon removal capacity in both systems was limited by the mass and activity of microorganisms. The SRT in the full and partial-bed reactors was primarily controlled by the biomass loss in the effluent and during backwash operation. The SRT was reduced from 20.08 days at OLR 4.18+/-0.20 kg COD m(-3) d(-1) to 7.62 days at OLR 5.80+/-0.31 kg COD m(-3) d(-1) in the full-bed, and from 7.17 days to 4.21 days in the partial-bed. After all, SRT values in the partial-bed were always lower than those in the full-bed.
    Matched MeSH terms: Biofilms
  9. Ibrahim, N.Z., Abdullah, M.
    Ann Dent, 2008;15(1):20-26.
    MyJurnal
    This study aim to evaluate antimicrobial efficacy of sodium hypochlorite (NaOCl) and ozonated water against Enterococci faecalis biofilm. The bacterial biofilm was exposed to 2.62%, 1.31% NaOCl and 0.1 ppm ozonated water over a range of time periods. The presence of viable cells was determined by enumeration of colony forming units (CFU). All experiments were repeated four times (n=4). The effectiveness of the agents was compared using nonparametric Kruskal- Wallis test. The result revealed that 2.62% of NaOCl can completely kill E. faecalis biofilm in 15 minutes whereas 1.31 % NaOCl required a longer time to produce such effect. 0.1 ppm ozonated, however, did not exhibit any antimicrobial effect within the period of time tested. From this study, it can be concluded that 0.1 ppm ozonated water was not comparable with 2.62% and 1.31% NaOCl in antimicrobial efficacy against E. faecalis biofilm.
    Matched MeSH terms: Biofilms
  10. Khabibor Rahman N, Bakar MZ, Hekarl Uzir M, Harun Kamaruddin A
    Math Biosci, 2009 Apr;218(2):130-7.
    PMID: 19563738 DOI: 10.1016/j.mbs.2009.01.007
    A one-dimensional biofilm model was developed based on the basic principle of conservation of mass. Three simple, generic processes were combined in the model which includes microbial growth, diffusive and convective mass transport. The final model could generate a quantitative description of the relationship between the microbial growth and the consumption of substrate (oxygen) within the fixed biofilm thickness. Mass transfer resistance contributes large influence on the substrates and microbial concentration across the biofilm thickness due to the effect of biofilm structure.
    Matched MeSH terms: Biofilms/growth & development*
  11. Goh CP, Seng CE, Sujari AN, Lim PE
    Environ Technol, 2009 Jun;30(7):725-36.
    PMID: 19705610 DOI: 10.1080/09593330902911689
    The objective of this study is to evaluate the performance of sequencing batch biofilm reactors (SBBRs) and sequencing batch reactor (SBR) in the simultaneous removal of p-nitrophenol (PNP) and ammoniacal nitrogen. SBBRs involved the use of polyurethane sponge cubes and polyethylene rings, respectively, as carrier materials. The results demonstrate that complete removal of PNP was achievable for the SBR and SBBRs up to the PNP concentration of 350 mg/l (loading rate of 0.368 kg/m3 d). At this loading rate, the average ammoniacal nitrogen removal efficiency for the SBR and SBBR (with polyethylene rings) was reduced to 86% and 96%, respectively. However, the SBBR (with polyurethane sponge cubes) still managed to achieve an almost 100% ammoniacal nitrogen removal. Based on the results, the performance of the SBBRs was better than that of SBR in PNP and ammoniacal nitrogen removal. The results of the gas chromatography mass spectroscopy, high-performance liquid chromatography and ultraviolet-visible analyses indicate that complete mineralization of PNP was achieved in all of the reactors.
    Matched MeSH terms: Biofilms*
  12. Sangetha S, Zuraini Z, Suryani S, Sasidharan S
    Micron, 2009 Jun;40(4):439-43.
    PMID: 19261482 DOI: 10.1016/j.micron.2009.01.003
    The inhibitory effect of Cassia spectabilis methanol leaf extract was evaluated against biofilm forming Candida albicans, which was sensitive to 6.25 mg/ml concentration of the extract. Transmission (TEM) and scanning electron microscope (SEM) observations were used to study the anticandidal activity and prevention of biofilm formation by the C. spectabilis extract. SEM analysis further revealed reduction in C. albicans biofilm in response to the extract. The main abnormalities noted via TEM study was the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The significant antifungal activity shown by this methanol extract of C. spectabilis suggests its potential against infections caused by C. albicans.
    Matched MeSH terms: Biofilms/drug effects*
  13. Ibrahim Z, Amin MF, Yahya A, Aris A, Umor NA, Muda K, et al.
    Water Sci Technol, 2009;60(3):683-8.
    PMID: 19657163 DOI: 10.2166/wst.2009.440
    Microbial flocs formed from raw textile wastewater in a prototype Aerobic Biofilm Reactor (ABR) system were characterised and studied for their potential use in the treatment of textile wastewater. After 90-100 days of operation, microbial flocs of loose irregular structures were obtained from the reactor with good settling velocity of 33 m/h and sludge volume index (SVI) of 48.2 mL/g. Molecular analysis of the flocs using PCR-amplified 16S rDNA sequence showed 98% homology to those of Bacillus sp, Paenibacillus sp and Acromobacter sp. Detection of Ca(2+)(131 mg/g) and Fe(2+)(131 mg/g) using atomic absorption spectrometer might be implicated with the flocs formation. In addition, presence of Co(2+) and Ni(2+) were indicative of the flocs ability to accumulate at least a fraction of the metals' present in the wastewater. When the flocs were used for the treatment of raw textile wastewater, they showed good removal of COD and colour about 55% and 70% respectively, indicating their potential application.
    Matched MeSH terms: Biofilms/growth & development*
  14. Omar M. Isa
    Medical Health Reviews, 2009;2009(2):47-58.
    MyJurnal
    The consequence of postoperative infections associated with orthopaedic or biomaterial-associated implants is devastating to both the patients and the surgeons. Bacterial microcolonies adhere to the surface of implants, forming biofilms and then detaching part of itself into free-floating planktonic forms may be the cause of recurrent and persistent infections. These bacteria are very resistant towards antibiotics and require a higher drug concentration than usual in order to eradicate them. Quorem-sensing is regarded as one mechanism of communication or integration between these microorganisms in the biofilm and may even be in the transfer of resistant genes. Disruption of this pathway is regarded as one method of inhibiting its growth and formation. Implant design, technique and stability of fixation as well as the surface characteristics, the material and its biocompatibility may also influence bacterial adhesion. It has been suggested that multi-prong strategies such as prevention and disruption of biofilm formation, parenteral antibiotics, use of antibiotic-impregnated construction materials and altering the intrinsic properties of the implant surface may help to eradicate this menace.
    Matched MeSH terms: Biofilms
  15. Shunmugaperumal T
    Recent Pat Drug Deliv Formul, 2010 Jun;4(2):153-73.
    PMID: 20236065
    Upon implantation or insertion into patient's body for exerting the intended purpose like salvage of normal functions of vital organs, the medical devices are unfortunately becoming the sites of competition between host cell integration and microbial adhesion. Moreover, since there is an increased use of implanted medical devices, the incidence of biofilm-and medical devices-related nosocomial infections is also increasing progressively. To control microbial colonization and subsequent biofilm formation of the medical devices, different approaches either to enhance the efficiency of certain antimicrobial agents or to disrupt the basic physiology of the pathogenic microorganisms including novel small molecules and antipathogenic drugs are being explored. In addition, the various lipid-and polymer-based drug delivery carriers are also investigated for applying antibiofilm coating of the medical devices especially over catheters. The main intention of this review is therefore to summarize the major and/breakthrough inventions disclosed in patent literature as well as in research papers related to microbial colonization of medical devices and novel preventive strategies. This review starts with an overview of the preventive strategies followed by a short description about the potential of different lipidic-and polymeric-drug delivery carriers in eradicating the biofilm-associated infections from the medical devices.
    Matched MeSH terms: Biofilms/drug effects
  16. Tang SY, Hara S, Melling L, Goh KJ, Hashidoko Y
    Biosci Biotechnol Biochem, 2010;74(9):1972-5.
    PMID: 20834139
    Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.
    Matched MeSH terms: Biofilms
  17. Tan HW, Tay ST
    Trop Biomed, 2011 Apr;28(1):175-80.
    PMID: 21602784
    This study describes the killer phenotypes of tropical environmental yeasts and the inhibition effects of the culture filtrates on the biofilm of Candida albicans. A total of 26 (10.5%) of 258 yeast isolates obtained from an environmental sampling study demonstrated killer activity to Candida species. The killer yeasts were identified as species belonging to the genus Aureobasidium, Pseudozyma, Ustilago and Candida based on sequence analysis of the ITS1-5.8S-ITS2 region of the yeasts. Pseudozyma showed the broadest killing effects against sensitive strains of Candida. New species of Ustilago and Pseudozyma demonstrating killer phenotypes were identified in this study. Interestingly, more than 50% reduction in the metabolic activity of Candida albicans biofilm was noted after exposure to the culture filtrates of the nine killer yeasts. Purification and characterization of toxin and metabolites are essential for understanding the yeast killing effects.
    Matched MeSH terms: Biofilms/drug effects*
  18. Tay ST, Abidin IA, Hassan H, Ng KP
    Med Mycol, 2011 Jul;49(5):556-60.
    PMID: 21254967 DOI: 10.3109/13693786.2010.551424
    This study was conducted to determine the proteinase, phospholipase, and biofilm forming abilities of Candida isolates in blood cultures of specimens from patients at the University Malaya Medical Center, Kuala Lumpur, Malaysia. Proteinase and phospholipase activities were detected in 93.7% and 73.3%, respectively, of 15 Candida albicans isolates. Amongst the 26 non-C. albicans Candida isolates, proteinase and phospholipase activities were detected in 88.5% and 7.7% of the isolates, respectively. There was no significant difference in the expression levels of proteinase amongst the Candida isolates studied (P = 0.272), but the phospholipase activity of C. albicans was significantly higher than that of the non-C. albicans Candida isolates (P = 0.003). There was no significant difference in the biofilm forming abilities of C. albicans and non-C. albicans Candida isolates on the polystyrene microtiter wells (P = 0.379). In addition, the findings of this study demonstrate increased resistance of Candida isolates in biofilms to amphotericin and fluconazole, as compared to their planktonic counterparts.
    Matched MeSH terms: Biofilms/growth & development*
  19. Torey A, Sasidharan S
    Eur Rev Med Pharmacol Sci, 2011 Aug;15(8):875-82.
    PMID: 21845797
    Candida (C.) albicans infection in its biofilm mode of growth has taken centre point with the increasing recognition of its role in human infections due to the development of resistance to the commonly used antibiotic or phenotypic adaptation within the biofilm. Hence, in this study the inhibitory effect of methanol extract of Cassia (C.) spectabilis leaves was evaluated against biofilm forming C. albicans.
    Matched MeSH terms: Biofilms/drug effects*
  20. Ali Ahmed AB, Taha RM
    Adv. Food Nutr. Res., 2011;64:403-16.
    PMID: 22054964 DOI: 10.1016/B978-0-12-387669-0.00031-4
    Biofilms are a natural part of the ecology of the earth. Many biofilms are quite harmful and must be treated or controlled. Other biofilms are beneficial and can be used to help fix serious problems. Biofilms can grow on many different surfaces, including rocks in water, foods, teeth, and various biomedical implants. This bacterial colonization may present the need for additional operations, amputation, or it may even lead to death. The fundamental principles of bacterial cell attachment and biofilm formation are discussed. Biofilms represents a new, wide-open field practice and research that is only going to get hotter with time. Functional organic plasma polymerized coatings are also discussed for their potential as bio-sensitive interfaces, connecting metallic electronic devices with their physiological environments.
    Matched MeSH terms: Biofilms*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links