Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Gong NC, Rogers KJ
    Med J Malaysia, 1973 Jun;27(4):280-3.
    PMID: 4270786
    Matched MeSH terms: Body Temperature Regulation/drug effects*
  2. Strickland SS, Duffield AE
    Ann Hum Biol, 1997 Sep-Oct;24(5):453-74.
    PMID: 9300122
    The areca nut is chewed by many of the world's population, mainly in South and Southeast Asia. Anthropometric data for 458 Sarawaki adults aged over 24 years, measured both in 1990 and in 1996, were examined in relation to use of tobacco and areca nut. Compared to non-smokers, smoking men were significantly taller and slightly (not significantly) thinner in both years, while smoking women were thinner in 1990 and slightly (not significantly) thinner in 1996. In both sexes there was an increase in the mean and range of body mass index (BMI, W/H2) over the 6-year interval. Smoking women showed a significantly smaller increment in BMI after allowing for areca nut use, which was associated with a similar trend, and this finding depended on including areca use in the model. The trend for men was similar. Possible effects of areca use could reflect variation in 'affluence' or conservatism, or appetite suppression. However, resting metabolic rate in 54 men and 70 women aged 24-60 years was associated with areca use. This association appeared to be mediated by the maximum room temperature of the 24 h preceding measurement. In women, a significant curvilinear association of RMR with maximum temperature was found in users of areca nut but not in non-users. In men, RMR was 7% higher (p < 0.05) in users of areca nut than in non-users, after allowing for age, height, weight, the sum of four skinfold thicknesses, and haemoglobin, but the association with maximum temperature was similar in both groups. It is speculated that constituents of areca nut modulate thermoregulatory pathways, resulting in prolonged temperature-dependent and hyperthermic heat production in this population; that males are more responsive to this effect than females; and that by this mechanism, and possibly also through centrally mediated effects on appetite for food, areca use could contribute to long-term variation in energy balance represented by change in BMI.
    Matched MeSH terms: Body Temperature Regulation/physiology
  3. Saat M, Tochihara Y, Hashiguchi N, Sirisinghe RG, Fujita M, Chou CM
    J Physiol Anthropol Appl Human Sci, 2005 Jul;24(4):267-75.
    PMID: 16079566
    The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS. In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  4. Saat M, Sirisinghe RG, Singh R, Tochihara Y
    J Physiol Anthropol Appl Human Sci, 2005 Sep;24(5):541-9.
    PMID: 16237263
    This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a hot environment.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  5. Saat M, Sirisinghe RG, Singh R, Tochihara Y
    Eur J Appl Physiol, 2005 Oct;95(4):313-20.
    PMID: 16151840
    Sixteen male students exercised for 14 days (1 h/day) in the heat for heat acclimation (HA). During deacclimation (DA) one group exercised in the cold (EXG, n=8) for 60 min/day (morning) and was exposed to the cold for another hour (afternoon) for 14 days. The other group was exposed to the cold (EPG, n=8) for 1 h each in the morning and afternoon (Ta: 18.0 degrees C, RH: 58%) over the same period. All returned to exercise in the heat for reacclimation (RA) for 10 days. Subjects were tested on days 1, 16, 21, 32, 36 and 44 on a bicycle ergometer for 60 min at 60% of VO(2max) in the heat (Ta: 31.1 degrees C, RH: 70%). Rectal temperature (T (re)) and heart rate (HR) at 40 min of exercise were used to determine the decay/gain of HA, which was calculated using the formula described by Pandolf et al. (Ergonomics, 20:399-408, 1977). After HA (day 16) T (re) and HR decreased significantly. During DA, EXG showed decay in T (re) of 24 and 35% and HR of 29 and 35% on days 21 and 32, respectively. For EPG the corresponding decay was of 2 and 9% for T (re) and 17 and 17% for HR. After 10 days of RA, EXG showed gains of 11% in T (re) and 12% in HR, while EPG showed gains of 47% in T (re) and 38% in HR. In conclusion, EXG had greater decay during DA and lower gains in RA compared to EPG. However, the differences between groups were significant only for T (re) after 4 days of DA.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  6. Naicker AS, Roohi SA, Lee CS, Chan WH, Tay LS, Din XJ, et al.
    Med J Malaysia, 2006 Feb;61 Suppl A:10-3.
    PMID: 17042221
    Poor glycaemic control and the duration of diabetes mellitus are known to accelerate development and progression of neuropathy. Diabetic co-morbidities: hypertension and hyperlipidaemia, have been postulated to associate with development of neuropathy. A diabetic foot with low temperature and frequent exposure to low temperature environment has recently been hypothesized to be at higher risk to develop early neuropathy. This cross-sectional study is undertaken to identify risk factors for diabetic neuropathy and the association between foot temperature and development of diabetic neuropathy by using simple clinical examination in the outpatient setting. From April 18, to April 30, 2005, universal sampling method was used to select 134 diabetic patients (type 1 or type 2 for >1 year) with peripheral neuropathy. Excluded are those with chronic alcoholism, drug-induced neuropathy, dietary history of vitamin B deficiency and family history of porphyria and hereditary sensorimotor neuropathy. The patient's duration of diabetes, glycaemic control status and the presence of co-morbids: hypertension and hyperlipidemia, were recorded. The temperature of the foot was measured by using thermo buddy. Of 134 patients representing Malaysian ethnic distribution with an equal number of males and females, 20.1% were in the age group of 61 to 65 years and, 85.1% and 67.9% belonged to lower socioeconomic and educational groups respectively. Associations between diabetic neuropathy and glycaemic control (p = 0.018) and duration of diabetes (p < 0.05) were significant. However, hypertension, hyperlipidaemia and low foot temperature were not significantly associated with development of diabetic neuropathy. Poor glycaemic control is significantly associated with diabetic neuropathy. Foot temperature alteration is merely an effect of autonomic neuropathy with a cold foot is attributed to co-existing peripheral arterial disease.

    Study site: Pusat Perubatan Primer Bandar Tasik Selatan, Kuala Lumpur, Malaysia
    Matched MeSH terms: Body Temperature Regulation/physiology
  7. Soleimani AF, Kasim A, Alimon AR, Zulkifli I
    Pak J Biol Sci, 2008 Sep 01;11(17):2163-6.
    PMID: 19266934
    A trial was conducted to determine the influence of short-term exposure to high ambient temperature at 28 and 35 days of age on deep body temperatures (Tb) and subsequent growth of birds until 42 days of age. A total of 90 day old chicks were reared in stainless steel battery cages and were assigned at random into 18 pens of 5 birds each, with 9 pens containing males and another 9 pens containing females. Three treatment groups, each represented by 3 male and 3 female pens, were represented by T1 without any heat exposure, T2 with heat exposure starting at day 28 and T3 with heat exposure starting at day 35. Heat stress was defined as 180 min exposure to 35 +/- 1 degrees C. Tb and body weights were measured at 35, 37 and 39 days of age immediately following heat exposure. Heat stress resulted in higher Tb and Onset of heat stress at 28 days resulted in significantly lower Tb than onset of heat stress at 35 days. Lower Tb in T2 than T3 permitted recovery in body weight at 42 days. Sexes responded similarly to heat stress.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  8. Wijayanto T, Wakabayashi H, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):491-500.
    PMID: 20824480 DOI: 10.1007/s00484-010-0358-5
    The objective of this study was to investigate thermoregulatory responses to heat in tropical (Malaysian) and temperate (Japanese) natives, during 60 min of passive heating. Ten Japanese (mean ages: 20.8 ± 0.9 years) and ten Malaysian males (mean ages: 22.3 ± 1.6 years) with matched morphological characteristics and physical fitness participated in this study. Passive heating was induced through leg immersion in hot water (42°C) for 60 min under conditions of 28°C air temperature and 50% RH. Local sweat rate on the forehead and thigh were significantly lower in Malaysians during leg immersion, but no significant differences in total sweat rate were observed between Malaysians (86.3 ± 11.8 g m(-2) h(-1)) and Japanese (83.2 ± 6.4 g m(-2) h(-1)) after leg immersion. In addition, Malaysians displayed a smaller rise in rectal temperature (0.3 ± 0.1°C) than Japanese (0.7 ± 0.1°C) during leg immersion, with a greater increase in hand skin temperature. Skin blood flow was significantly lower on the forehead and forearm in Malaysians during leg immersion. No significant different in mean skin temperature during leg immersion was observed between the two groups. These findings indicated that regional differences in body sweating distribution might exist between Malaysians and Japanese during heat exposure, with more uniform distribution of local sweat rate over the whole body among tropical Malaysians. Altogether, Malaysians appear to display enhanced efficiency of thermal sweating and thermoregulatory responses in dissipating heat loss during heat loading. Thermoregulatory differences between tropical and temperate natives in this study can be interpreted as a result of heat adaptations to physiological function.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  9. Wakabayashi H, Wijayanto T, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):509-17.
    PMID: 20949285 DOI: 10.1007/s00484-010-0374-5
    This study investigated the differences in heat dissipation response to intense heat stress during exercise in hot and humid environments between tropical and temperate indigenes with matched physical characteristics. Ten Japanese (JP) and ten Malaysian (MY) males participated in this study. Subjects performed exercise for 60 min at 55% peak oxygen uptake in 32°C air with 70% relative humidity, followed by 30 min recovery. The increase in rectal temperature (T(re)) was smaller in MY during exercise compared to JP. The local sweat rate and total body mass loss were similar in both groups. Both skin blood flow and mean skin temperature was lower in MY compared to JP. A significantly greater increase in hand skin temperature was observed in MY during exercise, which is attributable to heat loss due to the greater surface area to mass ratio and large number of arteriovenous anastomoses. Also, the smaller increase in T(re) in MY may be explained by the presence of a significantly greater core-skin temperature gradient in MY than JP. The thermal gradient is also a major factor in increasing the convective heat transfer from core to skin as well as skin blood flow. It is concluded that the greater core-skin temperature gradient observed in MY is responsible for the smaller increase in T(re).
    Matched MeSH terms: Body Temperature Regulation/physiology*
  10. Lee JY, Wakabayashi H, Wijayanto T, Hashiguchi N, Saat M, Tochihara Y
    Eur J Appl Physiol, 2011 Dec;111(12):2895-905.
    PMID: 21437607 DOI: 10.1007/s00421-011-1912-5
    For the coherent understanding of heat acclimatization in tropical natives, we compared ethnic differences between tropical and temperate natives during resting, passive and active heating conditions. Experimental protocols included: (1) a resting condition (an air temperature of 28°C with 50% RH), (2) a passive heating condition (28°C with 50% RH; leg immersion in a hot tub at a water temperature of 42°C), and (3) an active heating condition (32°C with 70% RH; a bicycle exercise). Morphologically and physically matched tropical natives (ten Malaysian males, MY) and temperate natives (ten Japanese males, JP) participated in all three trials. The results saw that: tropical natives had a higher resting rectal temperature and lower hand and foot temperatures at rest, smaller rise of rectal temperature and greater temperature rise in bodily extremities, and a lower sensation of thirst during passive and active heating than the matched temperate natives. It is suggested that tropical natives' homeostasis during heating is effectively controlled with the improved stability in internal body temperature and the increased capability of vascular circulation in extremities, with a lower thirst sensation. The enhanced stability of internal body temperature and the extended thermoregulatory capability of vascular circulation in the extremities of tropical natives can be interpreted as an interactive change to accomplish a thermal dynamic equilibrium in hot environments. These heat adaptive traits were explained by Wilder's law of initial value and Werner's process and controller adaptation model.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  11. Md Din MF, Lee YY, Ponraj M, Ossen DR, Iwao K, Chelliapan S
    J Therm Biol, 2014 Apr;41:6-15.
    PMID: 24679966 DOI: 10.1016/j.jtherbio.2014.01.004
    Recent years have seen issues related to thermal comfort gaining more momentum in tropical countries. The thermal adaptation and thermal comfort index play a significant role in evaluating the outdoor thermal comfort. In this study, the aim is to capture the thermal sensation of respondents at outdoor environment through questionnaire survey and to determine the discomfort index (DI) to measure the thermal discomfort level. The results indicated that most respondents had thermally accepted the existing environment conditions although they felt slightly warm and hot. A strong correlation between thermal sensation and measured DI was also identified. As a result, a new discomfort index range had been proposed in association with local climate and thermal sensation of occupants to evaluate thermal comfort. The results had proved that the respondents can adapt to a wider range of thermal conditions.Validation of the questionnaire data at Putrajaya was done to prove that the thermal sensation in both Putrajaya and UTM was almost similar since they are located in the same tropical climate region. Hence, a quantitative field study on building layouts was done to facilitate the outdoor human discomfort level based on newly proposed discomfort index range. The results showed that slightly shaded building layouts of type- A and B exhibited higher temperature and discomfort index. The resultant adaptive thermal comfort theory was incorporated into the field studies as well. Finally, the study also showed that the DI values were highly dependent on ambient temperature and relative humidity but had fewer effects for solar radiation intensity.
    Matched MeSH terms: Body Temperature Regulation*
  12. Levesque DL, Lobban KD, Lovegrove BG
    PMID: 25155185 DOI: 10.1007/s00360-014-0858-4
    Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  13. Wakabayashi H, Wijayanto T, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    PMID: 24490869 DOI: 10.1186/1880-6805-33-5
    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat.
    Matched MeSH terms: Body Temperature Regulation/physiology*
  14. Bande, Y. M., Mariah, N. A.
    MyJurnal
    In this study, various methods and applications of flat plate solar collectors are discussed and pictorial representations are presented. Low temperature applications of flat plate collectors are identified in solar cooking, solar water heating, space and air heating, industrial heating plants and in agricultural produce drying processes. Basic equations, as presented by many researchers in the performances of flat plate collectors, are also presented. The review discusses the analysis of losses from flat plate collectors towards obtaining the overall heat loss coefficient which indicate the performance of flat plate collectors.
    Matched MeSH terms: Body Temperature Regulation
  15. Marshall DJ, Rezende EL, Baharuddin N, Choi F, Helmuth B
    Ecol Evol, 2015 12;5(24):5905-19.
    PMID: 26811764 DOI: 10.1002/ece3.1785
    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions, and behavioral responses may alter predictions of studies that ignore these biological details.
    Matched MeSH terms: Body Temperature Regulation
  16. Dahlan ND, Gital YY
    Appl Ergon, 2016 May;54:169-76.
    PMID: 26851476 DOI: 10.1016/j.apergo.2015.12.008
    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p < 0.05). Sensory and affective responses as a consequence of thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal sensation immediately after a down-step thermal transition (≤ 1 min exposure duration) for people living in a hot-humid climate country.
    Matched MeSH terms: Body Temperature Regulation/physiology
  17. Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, et al.
    Ecol Lett, 2016 11;19(11):1372-1385.
    PMID: 27667778 DOI: 10.1111/ele.12686
    Thermal performance curves (TPCs), which quantify how an ectotherm's body temperature (Tb ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced Tb. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions underlying the integration of TPCs with Tb , to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change.
    Matched MeSH terms: Body Temperature Regulation*
  18. Zainuddin N, Saleh H, Hashim I, Roslan R
    Sains Malaysiana, 2016;45:315-321.
    Effects of radiation on free convection about a heated horizontal circular cylinder in the presence of heat generation is investigated numerically. The cylinder is fixed and immersed in a stationary fluid, in which the temperature is uniformly heated about the temperature of the surrounding fluid. The governing equations are transformed into dimensionless non-linear partial differential equations and solved by employing a finite difference method. An implicit finite difference scheme of Crank Nicolson method is used to analyze the results. This study determined the effects of radiation parameter, heat generation parameter, and the Prandtl number, on the temperature and velocity profiles. The results of the local heat transfer and skin-friction coefficient in the presence of radiation for some selected values of and are shown graphically.
    Matched MeSH terms: Body Temperature Regulation
  19. Ullah I, Khan I, Shafie S
    Sci Rep, 2017 04 25;7(1):1113.
    PMID: 28442747 DOI: 10.1038/s41598-017-01205-5
    Unsteady mixed convection flow of Casson fluid towards a nonlinearly stretching sheet with the slip and convective boundary conditions is analyzed in this work. The effects of Soret Dufour, viscous dissipation and heat generation/absorption are also investigated. After using some suitable transformations, the unsteady nonlinear problem is solved by using Keller-box method. Numerical solutions for wall shear stress and high temperature transfer rate are calculated and compared with previously published work, an excellent arrangement is followed. It is noticed that fluid velocity reduces for both local unsteadiness and Casson parameters. It is likewise noticed that the influence of a Dufour number of dimensionless temperature is more prominent as compared to species concentration. Furthermore, the temperature was found to be increased in the case of nonlinear thermal radiation.
    Matched MeSH terms: Body Temperature Regulation
  20. James CA, Richardson AJ, Watt PW, Willmott AGB, Gibson OR, Maxwell NS
    J Strength Cond Res, 2018 May;32(5):1366-1375.
    PMID: 28486332 DOI: 10.1519/JSC.0000000000001979
    James, CA, Richardson, AJ, Watt, PW, Willmott, AGB, Gibson, OR, and Maxwell, NS. Short-term heat acclimation and precooling, independently and combined, improve 5-km time trial performance in the heat. J Strength Cond Res 32(5): 1366-1375, 2018-Following heat acclimation (HA), endurance running performance remains impaired in hot vs. temperate conditions. Combining HA with precooling (PC) demonstrates no additive benefit in intermittent sprint, or continuous cycling exercise protocols, during which heat strain may be less severe compared to endurance running. This study investigated the effect of short-term HA (STHA) combined with mixed methods PC, on endurance running performance and directly compared PC and HA. Nine amateur trained runners completed 5-km treadmill time trials (TTs) in the heat (32° C, 60% relative humidity) under 4 conditions; no intervention (CON), PC, short-term HA (5 days-HA) and STHA with PC (HA + PC). Mean (±SD) performance times were; CON 1,476 (173) seconds, PC 1,421 (146) seconds, HA 1,378 (116) seconds and HA + PC 1,373 (121) seconds. This equated to the following improvements versus CON; PC -3.7%, HA -6.6% and HA + PC -7.0%. Statistical differences were only observed between HA and CON (p = 0.004, d = 0.68, 95% CI [-0.27 to 1.63]) however, similar effect sizes were observed for HA + PC vs. CON (d = 0.70, 95% CI [-0.25 to 1.65]), with smaller effects between PC vs. CON (d = 0.34, 95% CI [-0.59 to 1.27]), HA vs. PC (d = 0.33, 95% CI [-0.60 to 1.26]) and HA + PC vs. PC (d = 0.36, 95% CI [-0.57 to 1.29]). Pilot testing revealed a TT typical error of 16 seconds (1.2%). Precooling offered no further benefit to performance in the acclimated individual, despite modest alleviation of physiological strain. Maintenance of running speed in HA + PC, despite reduced physiological strain, may indicate an inappropriate pacing strategy therefore, further familiarization is recommended to optimize a combined strategy. Finally, these data indicate HA, achieved through cycle training, yields a larger ergogenic effect than PC on 5-km running performance in the heat, although PC remains beneficial when HA is not possible.
    Matched MeSH terms: Body Temperature Regulation/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links