RESULTS: A set of sequences retrieved from IBD virus-infected chickens that did not map to the chicken reference genome were de novo assembled, clustered and analysed. From six inbred chicken lines, we managed to assemble 10,828 uni-transcripts and screened 618 uni-transcripts which were the most significant sequences to known genes, as determined by BLASTX searches. Based on the differentially expressed genes (DEGs) analysis, 12 commonly upregulated and 18 downregulated uni-genes present in all six inbred lines were identified with false discovery rate of q-value
RESULTS: The depletion of IgM+ cells and infiltration of macrophages were observed to be higher in bursa infected with AF2240 as compared to IBS002. In line with the increment of the macrophage population, higher nitric oxide (NO) and malondialdehyde (MDA) contents which indicated higher oxidative stress were also detected in bursa infected with NDV AF2240. In addition, higher pro-inflammatory cytokines and chemokine gene expression such as chicken CXCLi2, IL-18 and IFN-γ were observed in AF2240 infected bursa. Depletion of IgM+ cells was further confirmed with increased cell death and apoptosis of the cells in AF2240 infected bursa as compared to IBS002. However, it was found that the viral load for NDV strain IBS002 was comparatively higher than AF2240 although the magnitude of the pro- inflammatory cytokines expression and cell apoptosis was lower than AF2240.
CONCLUSION: The results of our study demonstrated that infection of NDV strains AF2240 and IBS002 caused apoptosis in bursa IgM+ cells and its severity was associated with increased expression of pro-inflammatory cytokines/chemokine, macrophage infiltration and oxidative stress as the infection duration was prolonged. However, of the two viruses, we observed that NDV AF2240 induced a greater magnitude of apoptosis in chicken bursa IgM+ cells in comparison to IBS002. This might be due to the high level of oxidative stress and inflammatory cytokines/chemokine as well as lower IL10 expression which subsequently led to a high rate of apoptosis in the chicken bursa of Fabricius although the detected viral load of AF2240 was lower than IBS002.
Materials and Methods: Tissue samples were collected from 24 broiler breeder chickens from four commercial broiler breeder farms and six layer chickens from one layer farm. Gross and histopathological examinations and PCR amplification of the gene encoding for avian MD herpesvirus (MDV-1) were conducted.
Results: Gross pathological changes including hepatomegaly, splenomegaly, lymphomatous lesion at the mesentery, oviduct atrophy, and follicular atresia with lymphomatous were observed, whereas diffuse multifocal whitish infiltration of the spleen, neoplastic infiltration in the liver, intrafollicular lymphoid infiltration of the bursa of Fabricius, and lymphomatous tumor at the mesentery were seen on histopathological examinations. Confirmation by PCR showed that a total of 16 (53.33%) samples were positive for avian MDV-1. Although the outbreak involved a much larger number of birds in the respective farms, our investigation was limited based on resource and time frame allocated for the study.
Conclusion: The findings from this study help in emphasizing the potential threats of MDV to the poultry industry globally, in general, and in Malaysia, in particular. As the scope of the current study is limited, future studies focusing on MDV pathogenesis, typing, and causes of vaccine failures are recommended.
METHODS: A total of 300 day old male broiler chicks were assigned to four dietary n-3 PUFA ascending levels as the treatment groups (T1: 0.5; T2: 8.0; T3: 11.5; T4: 16.5) using combinations of tuna oil and sunflower oil. All diets were isocaloric and isonitrogenous. On day 28, all birds were challenged with IBD virus. Antibody titer, cytokine production, bursa lesion pre and post-challenge and lymphoid organ weight were recorded.
RESULTS: On d 42 the highest body weight was observed in the T2 and T3 and the lowest in T4 chickens. Feed conversion ratio of the T2 broilers was significantly better than the other groups. Although productive parameters were not responded to the dietary n-3 PUFA in a dose-dependent manner, spleen weight, IBD and Newcastle disease antibody titers and IL-2 and IFN-γ concentrations were constantly elevated by n-3 PUFA enrichment.
CONCLUSIONS: Dietary n-3 PUFA enrichment may improve the immune response and IBD resistance, but the optimum performance does not coincide with the optimum immune response. It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent manner. Thus, a moderate level of dietary n-3 PUFA enrichment may help to put together the efficiency of performance and relative immune response enhancement in broiler chickens.