Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Chaudhry GE, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, Sung YY, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):17-24.
    PMID: 33576208 DOI: 10.31557/APJCP.2021.22.S1.17
    OBJECTIVE: Liver cancer is one of the most common causes of cancer death, with reduced survival rates. The development of new chemotherapeutic agents is essential to find effective cytotoxic drugs that give minimum side effects to the surrounding healthy tissues. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the crude and diethyl ether extract of Xylocarpus mouccensis on the human hepatocellular carcinoma cell line.

    METHODS: The cytotoxicity activity was measured using the MTS assay. The mode of cell death determined by the apoptosis study, DNA fragmentation analysis done by using the TUNEL system. The pathway study or mechanism of apoptosis observed by study caspases 8, 9, 3/7 Glo-caspases method.

    RESULTS: In this study, the methanol extracts prepared from leaf Xylocarpus mouccensis leaf produced cytotoxicity effect with IC50 (72hr) < 30µg/ml. The IC50 value at 72 hours exerted by diethyl ether extract of Xylocarpus moluccensis leaf was 0.22 µg/ml, which was more cytotoxic than to that of crude methanol extract. The results obtained by the colorimetric TUNEL system suggest that methanol crude extract of Xylocarpus moluccensis (leaf), diethyl ether extract of Xylocarpus moluccensis (leaf) and methanol extract of Xylocarpus granatum (bark) induced DNA fragmentation in the HepG2 cell line. Besides, the caspase-Glo assay demonstrated that diethyl ether leaf extract of Xylocarpus moluccensis triggered apoptotic cell death via activation of caspases -8, and -3/7 However, no visible activation was noticed for caspase -9. Furthermore, TLC indicates the presence of potential metabolites in an extract of Xylocarpus moluccensis.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in the extract of Xylocarpus moluccensis as a future therapeutic agent for the treatment of cancer.
    .

    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  2. Lim WS, Ng DL, Kor SB, Wong HK, Tengku-Muhammad TS, Choo QC, et al.
    Cytokine, 2013 Jan;61(1):266-74.
    PMID: 23141142 DOI: 10.1016/j.cyto.2012.10.007
    Peroxisome proliferator activated receptor-alpha (PPARα) plays a major role in the regulation of lipid and glucose homeostasis, and inflammatory responses. The objectives of the study were to systematically investigate the effects of TNF-α and its regulatory pathway on PPARα expression in HepG2 cells using Real-Time RT-PCR and western blot analysis. Here, TNF-α suppressed PPARα mRNA expression in a dose- and time-dependent manner at the level of gene transcription. Pre-treatment of cells with 10μM of Wedelolactone for 2h was sufficient to restore PPARα expression to basal levels and also affected the expression of PPARα-regulated genes. This study also demonstrated that TNF-α represses PPARα expression by augmenting the activity of canonical NF-κB signalling pathway. This was shown by the abrogation of TNF-α-mediated PPARα down-regulation, after both p65 and p50 were knocked down via siRNA. The IKK contributes to IκBα degradation and mediates inducible phosphorylation of p105 at Ser933. Surprisingly, phosphorylation of p65 at Ser468 and Ser536 were severely abrogated with Wedelolactone inhibition, suggesting that Ser468 and Ser536, but not Ser276, may mediate the TNF-α inhibitory action on PPARα gene expression. These results suggest that TNF-α might, at least in part, suppress PPARα expression through activation of IKK/p50/p105/p65 pathway. Furthermore, phosphorylation of p65 at Ser468 and Ser536 may play a crucial role in the mechanism that limits PPARα production in the human HepG2 cells.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism*
  3. Ng CX, Lee SH
    Curr Cancer Drug Targets, 2020;20(3):187-196.
    PMID: 31713495 DOI: 10.2174/1568009619666191111141032
    Peptides have acquired increasing interest as promising therapeutics, particularly as anticancer alternatives during recent years. They have been reported to demonstrate incredible anticancer potentials due to their low manufacturing cost, ease of synthesis and great specificity and selectivity. Hepatocellular carcinoma (HCC) is among the leading cause of cancer death globally, and the effectiveness of current liver treatment has turned out to be a critical issue in treating the disease efficiently. Hence, new interventions are being explored for the treatment of hepatocellular carcinoma. Anticancer peptides (ACPs) were first identified as part of the innate immune system of living organisms, demonstrating promising activity against infectious diseases. Differentiated beyond the traditional effort on endogenous human peptides, the discovery of peptide drugs has evolved to rely more on isolation from other natural sources or through the medicinal chemistry approach. Up to the present time, the pharmaceutical industry intends to conduct more clinical trials for the development of peptides as alternative therapy since peptides possess numerous advantages such as high selectivity and efficacy against cancers over normal tissues, as well as a broad spectrum of anticancer activity. In this review, we present an overview of the literature concerning peptide's physicochemical properties and describe the contemporary status of several anticancer peptides currently engaged in clinical trials for the treatment of hepatocellular carcinoma.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  4. Sawai S, Mohktar MS, Safwani WKZW, Ramasamy TS
    Anticancer Agents Med Chem, 2018;18(9):1258-1266.
    PMID: 29521251 DOI: 10.2174/1871520618666180307143229
    BACKGROUND: Konjac Glucomannan (KGM) is a water-soluble dietary fibre extracted from Amorphophallus konjac K. Koch (Araceae). Konjac fibre has been clinically proven as an effective antioxidant agent in weight control but its traditionally known tumour suppression property remains to be explored.

    OBJECTIVE: The main objective of this study is to determine the potential anti-proliferative effect of KGM on cancer and normal human liver cell lines, HepG2 and WRL68, respectively.

    METHOD: HepG2 and WRL68 cells were treated with KGM, D-mannose, KGM-D-mannose and 5-fluorouracil. The morphological changes in those treated cells were observed. Cytotoxic effect of the treatments on cell viability and proliferation, and apoptosis genes expression were assessed by cytotoxicity assay, flow cytometry and RT-PCR analyses.

    RESULTS: The results show that KGM treatment resulted in reduced viability of HepG2 cells significantly, in line with the apoptosis-like morphological changes. Up-regulation of BAX and down-regulation of BCL2 genes as reflected by high Bax to Bcl 2 ratio suggests that the inhibitory effect of KGM on HepG2 cells most likely via Bcl2/Bax protein pathway. Despite the effectiveness of standard drug 5-FU in suppressing the viability and proliferation of HepG2 cells, it however, exhibited no selective inhibition of cancer cells as compared to KGM.

    CONCLUSION: Current findings suggested that KGM is a potential anti-cancer compound/drug entity, which could be an alternative preventive agent against liver cancer.

    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  5. Mohamed J, Wei WL, Husin NN, Alwahaibi NY, Budin SB
    Pak J Biol Sci, 2011 Dec 01;14(23):1055-60.
    PMID: 22590839
    Selenium in the form of sodium selenite (SSE) is an essential micronutrient which known to possess antioxidant and anticancer properties. This study emphasizes the role of selenium on oxidative stress in experimental rats with N-diethylnitrosamine (DEN) initiated and 2-acetylaminofluorene (2-AAF) promoted multistage hepatocellular carcinogenesis (HCC). Rats were divided randomly into six groups: negative control, positive control (DEN+2-AAF), preventive group (pre-SEE 4 weeks+DEN), preventive control (respective control for preventive group), therapeutic group (DEN+post-SSE 12 weeks) and therapeutic control (respective control for therapeutic group). SSE (4 mg L(-1)) was given to animals before initiation and during promotion phase of HCC. The levels of total protein (TP), conjugated diens (CD), malondialdehyde (MDA), fluorescent pigment (FP), antioxidant activity (AOA) and DNA damage were measured. Supplementation of SSE before the initiation phase of carcinogenicity significantly increased TP and AOA level (p < 0.05) while it decreased the levels of CD, MDA, DNA damage and FP (p < 0.05). Supplementation of SSE during the promotion phase of carcinogenicity significantly decreased the DNA damage and FP level (p < 0.05) and there were negative correlation between the level of AOA and with the level of FP and CD. Thus, supplementation of SSE reduced the adverse changes which occur in liver cancer. However, the chemoprevention effect of SSE was more pronounced when it was supplemented before initiation phase of cancer when compared to promotion phase.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  6. Handayani T, Sakinah S, Nallappan M, Pihie AH
    Anticancer Res, 2007 Mar-Apr;27(2):965-71.
    PMID: 17465228
    Xanthorrhizol is a sesquiterpenoid compound extracted from the rhizome of Curcuma xanthorrhiza. This study investigated the antiproliferative effect and the mechanism of action of xanthorrhizol on human hepatoma cells, HepG2, and the mode of cell death. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the HepG2 cells with a 50% inhibition of cell growth (IC50) value of 4.17 +/- 0.053 microg/ml. The antiproliferative activity of xanthorrhizol was due to apoptosis induced in the HepG2 cells and not necrosis, which was confirmed by the Tdt-mediated dUTP nick end labeling (TUNEL) assay. The xanthorrhizol-treated HepG2 cells showed typical apoptotic morphology such as DNA fragmentation, cell shrinkage and elongated lamellipodia. The apoptosis mediated by xanthorrhizol in the HepG2 cells was associated with the activation of tumor suppressor p53 and down-regulation of antiapoptotic Bcl-2 protein expression, but not Bax. The levels of Bcl-2 protein expression decreased 24-h after treatment with xanthorrhizol and remained lower than controls throughout the experiment, resulting in a shift in the Bax to Bcl-2 ratio thus favouring apoptosis. The processing of the initiator procaspase-9 was detected. Caspase-3 was also found to be activated, but not caspase-7. Xanthorrhizol exerts antiproliferative effects on HepG2 cells by inducing apoptosis via the mitochondrial pathway.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  7. Stepien M, Fedirko V, Duarte-Salles T, Ferrari P, Freisling H, Trepo E, et al.
    Cancer Epidemiol, 2016 Feb;40:179-87.
    PMID: 26773278 DOI: 10.1016/j.canep.2016.01.002
    INTRODUCTION: Serum liver biomarkers (gamma-glutamyl transferase, GGT; alanine aminotransferase, ALT; aspartate aminotransferase, AST; alkaline phosphatase, ALP; total bilirubin) are used as indicators of liver disease, but there is currently little data on their prospective association with risk of hepatobiliary cancers.

    METHODS: A nested-case control study was conducted within the prospective EPIC cohort (>520,000 participants, 10 European countries). After a mean 7.5 mean years of follow-up, 121 hepatocellular carcinoma (HCC), 34 intrahepatic bile duct (IHBC) and 131 gallbladder and biliary tract (GBTC) cases were identified and matched to 2 controls each. Circulating biomarkers were measured in serum taken at recruitment into the cohort, prior to cancer diagnosis. Multivariable adjusted conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (OR; 95%CI).

    RESULTS: In multivariable models, 1SD increase of each log-transformed biomarker was positively associated with HCC risk (OR(GGT)=4.23, 95%CI:2.72-6.59; OR(ALP)=3.43, 95%CI:2.31-5.10;OR(AST)=3.00, 95%CI:2.04-4.42; OR(ALT)=2.69, 95%CI:1.89-3.84; OR(Bilirubin)=2.25, 95%CI:1.58-3.20). Each liver enzyme (OR(GGT)=4.98; 95%CI:1.75-14.17; OR(AST)=3.10, 95%CI:1.04-9.30; OR(ALT)=2.86, 95%CI:1.26-6.48, OR(ALP)=2.31, 95%CI:1.10-4.86) but not bilirubin (OR(Bilirubin)=1.46,95%CI:0.85-2.51) showed a significant association with IHBC. Only ALP was significantly associated with GBTC risk (OR(ALP)=1.59, 95%CI:1.20-2.09).

    CONCLUSION: This study shows positive associations between circulating liver biomarkers in sera collected prior to cancer diagnoses and the risks of developing HCC or IHBC, but not GBTC.

    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  8. Mun KS, Cheah PL, Baharudin NB, Looi LM
    Malays J Pathol, 2006 Dec;28(2):73-7.
    PMID: 18376794 MyJurnal
    Hepatocellular carcinoma (HCC) is among the ten most common cancers in Malaysian males. As cellular proliferation is an important feature of malignant transformation, we studied the proliferation pattern of normal and benign perineoplastic liver versus hepatocellular carcinoma in an attempt to further understand the tumour transformation process. 39 HCC (21 with accompanying and 18 without cirrhosis) histologically diagnosed at the Department of Pathology, University of Malaya Medical Centre between January 1992 and December 2003 were immunohistochemically studied using a monoclonal antibody to PCNA (Clone PC10: Dako). 20 livers from cases who had succumbed to traumatic injuries served as normal liver controls (NL). PCNA labeling index (PCNA-LI) was determined by counting the number of immunopositive cells in 1000 contiguous HCC, benign cirrhotic perineoplastic liver (BLC), benign perineoplastic non-cirrhotic (BLNC) and NL cells and conversion to a percentage. The PCNA-LI was also expressed as Ojanguren et al's grades. PCNA was expressed in 10% NL, 38.9% BLNC, 76.2% BLC and 71.8% HCC with BLNC, BLC and HCC showing significantly increased (p < 0.05) number of cases which expressed PCNA compared with NL. The number of BLC which expressed PCNA was also significantly increased compared with BLNC. PCNA-LI ranged from 0-2.0% (mean = 0.2%) in NL, 0-2.0% (mean = 0.3%) in BLNC, 0-3.6% (mean = 0.7%) in BLC and 0-53.8% (mean = 7.6%) in HCC with PCNA-LI significantly increased (p < 0.05) only in HCC compared with BLC, BLNC and NL. Accordingly, all NL, BLC and BLNC showed minimal (<5% cells being immunopositive) immunoreactivity on Ojanguren et al's grading system and only HCC demonstrated immunoreactivity which ranged up to grade 3 (75% of cells). From this study, there appears to be a generally increasing trend of proliferative activity from NL to BLNC to BLC and HCC. Nonetheless, BLNC and BLC, like NL, retained low PCNA-LI and only HCC had a significantly increased PCNA-LI compared with the benign categories. This is probably related to the malignant nature of HCC and may reflect the uncontrolled proliferation of the neoplastic hepatocytes.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism*
  9. Muhammad Yusuf AN, Raja Ali RA, Muhammad Nawawi KN, Mokhtar NM
    Malays J Pathol, 2020 Dec;42(3):377-384.
    PMID: 33361718
    INTRODUCTION: Recent studies have published the roles of exosomal miRNAs in the pathogenesis of various type of malignancies and can be developed as potential biomarkers for diagnostic, prognostic and therapeutic purposes. The aim of this study was to identify the expression level of selected miRNAs (miR-182, miR-301a, and miR-373) in exosomes of the serum and ascitic fluid in patients with non-alcoholic steatohepatitis (NASH)-related liver cirrhosis with or without hepatocellular carcinoma (HCC).

    MATERIALS AND METHODS: A literature search was performed to identify potential miRNAs involved in the pathogenesis of HCC. Unpaired serum and ascitic fluid were obtained from 52 patients with NASH related liver cirrhosis (n=26 for each group of with and without HCC). Exosomal miRNA was isolated from all samples. Expression levels of miR-182, miR-301a and miR- 373 were determined using quantitative real-time PCR.

    RESULTS: Serum-derived exosomal mir-182, miR-301a and miR-373 were significantly up-regulated with fold change of 1.77, 2.52, and 1.67 (p< 0.05) respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC. We identified the expression levels of ascitic fluid-derived exosomal mir-182, miR-301a, and miR-373 were significantly up-regulated with fold change of 1.6, 1.94 and 2.13 respectively in NASH-induced liver cirrhosis with HCC as compared to NASH-induced liver cirrhosis without HCC (p <0.05). There was poor correlation expression of all the selected exosomal miRNA between serum- and ascitic fluid-derived in HCC group.

    CONCLUSIONS: This preliminary data showed significant increase in the expression levels of exosomal miR-182, miR-301a and miR- 373 in both serum and ascetic fluid suggesting the possible roles of these miRNAs as circulating biomarkers for NASH-induced liver cirrhosis with hepatocellular carcinoma.

    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism*
  10. Buskaran K, Hussein MZ, Mohd Moklas MA, Fakurazi S
    Int J Mol Sci, 2020 Aug 16;21(16).
    PMID: 32824281 DOI: 10.3390/ijms21165874
    The development of nanocomposites has swiftly changed the horizon of drug delivery systems in defining a new platform. Major understanding of the interaction of nanocomposites with cells and how the interaction influences intracellular uptake is an important aspect to study in order to ensure successful utilisation of the nanocomposites. Studies have suggested that the nanocomposites' ability to permeate into biological cells is attributable to their well-defined physicochemical properties with nanoscale size, which is relevant to the nanoscale components of biology and cellular organelles. The functionalized graphene oxide coated with polyethylene glycol, loaded with protocatechuic acid and folic acid (GOP-PCA-FA) nanocomposite intracellular uptake was analysed using transmission electron microscope. The accumulation of fluorescent-labelled nanocomposites in the HepG2 cell was also analysed using a fluorescent microscope. In vitro cellular uptake showed that there was uptake of the drug from 24 h into the cells and the release study using fluorescently tagged nanocomposite demonstrated that release and accumulation were observed at 24 h and 48 h. Moreover, the migration ability of tumor cells is a key step in tumor progression which was observed 48 h after treatment. The GOP serves as a potential nanocarrier system which is capable of improving the therapeutic efficacy of drugs and biomolecules in medical as well as pharmaceutical applications through the enhanced intracellular release and accumulation of the encapsulated drugs. Nonetheless, it is essential to analyse the translocation of our newly developed GOP-PCA-FA, and its efficiency for drug delivery, effective cellular uptake, and abundant intracellular accumulation would be compromised by possible untoward side effects.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism*
  11. Stepien M, Keski-Rahkonen P, Kiss A, Robinot N, Duarte-Salles T, Murphy N, et al.
    Int J Cancer, 2021 Feb 01;148(3):609-625.
    PMID: 32734650 DOI: 10.1002/ijc.33236
    Hepatocellular carcinoma (HCC) development entails changes in liver metabolism. Current knowledge on metabolic perturbations in HCC is derived mostly from case-control designs, with sparse information from prospective cohorts. Our objective was to apply comprehensive metabolite profiling to detect metabolites whose serum concentrations are associated with HCC development, using biological samples from within the prospective European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (>520 000 participants), where we identified 129 HCC cases matched 1:1 to controls. We conducted high-resolution untargeted liquid chromatography-mass spectrometry-based metabolomics on serum samples collected at recruitment prior to cancer diagnosis. Multivariable conditional logistic regression was applied controlling for dietary habits, alcohol consumption, smoking, body size, hepatitis infection and liver dysfunction. Corrections for multiple comparisons were applied. Of 9206 molecular features detected, 220 discriminated HCC cases from controls. Detailed feature annotation revealed 92 metabolites associated with HCC risk, of which 14 were unambiguously identified using pure reference standards. Positive HCC-risk associations were observed for N1-acetylspermidine, isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, l,l-cyclo(leucylprolyl), glycochenodeoxycholic acid, glycocholic acid and 7-methylguanine. Inverse risk associations were observed for retinol, dehydroepiandrosterone sulfate, glycerophosphocholine, γ-carboxyethyl hydroxychroman and creatine. Discernible differences for these metabolites were observed between cases and controls up to 10 years prior to diagnosis. Our observations highlight the diversity of metabolic perturbations involved in HCC development and replicate previous observations (metabolism of bile acids, amino acids and phospholipids) made in Asian and Scandinavian populations. These findings emphasize the role of metabolic pathways associated with steroid metabolism and immunity and specific dietary and environmental exposures in HCC development.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  12. Lam KL, Yang KL, Sunderasan E, Ong MT
    Cell Prolif, 2012 Dec;45(6):577-85.
    PMID: 23046445 DOI: 10.1111/j.1365-2184.2012.00841.x
    OBJECTIVES: Latex from Hevea brasiliensis (natural rubber tree primarily cultivated for its rubber particles) has no known primary metabolic function, although its biological role is as a plant defence system. The present study has evaluated specific anti-proliferative effects of latex whole C-serum and its subfractions, on human cancer cell lines.

    MATERIALS AND METHODS: Cell viability assay using MTT, DNA fragmentation assay and real-time PCR were used to evaluate the cytotoxic effects of latex whole C-serum and its subfractions on the cell lines.

    RESULTS: MTT assay revealed very low LC(50) values, 2.0 and 280 ng/ml, for DCS and DCP treatments, respectively. DCS was proven to be more potent compared to DCP, in conferring specific anti-proliferative effects on the cancer cell lines. The study also indicated that anti-proliferative activity of pre-heated C-serum fractions diminished significantly.

    CONCLUSION: Although noteworthy cell death was reported, DNA fragmentation assay and real-time PCR confirmed that that induced by latex C-serum subfractions was not promoted via the classical apoptotic signalling pathway.

    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  13. Salleh MN, Runnie I, Roach PD, Mohamed S, Abeywardena MY
    J Agric Food Chem, 2002 Jun 19;50(13):3693-7.
    PMID: 12059144
    Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  14. Kntayya SB, Ibrahim MD, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Nutrients, 2018 Jun 04;10(6).
    PMID: 29866995 DOI: 10.3390/nu10060718
    Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aim of the study is to assess the cytotoxicity of sulforaphene in HepG2 cells and evaluate its potential to enhance apoptosis. The cytotoxicity of sulforaphene in HepG2 cells was carried out ensuing an initial screening with two other cell lines, MFC-7 and HT-29, where sulforaphene displayed highest toxicity in HepG2 cells following incubation at 24, 48 and 72 h. In contrast, the intact glucosinolate showed no cytotoxicity. Morphological studies indicated that sulforaphene stimulated apoptosis as exemplified by cell shrinkage, blebbing, chromatin condensation, and nuclear fragmentation. The Annexin V assay revealed significant increases in apoptosis and the same treatment increased the activity of caspases -3/7 and -9, whereas a decline in caspase-8 was observed. Impairment of cell proliferation was indicated by cell cycle arrest at the Sub G₀/G₁ phase as compared to the other phases. It may be concluded that sulforaphene, but not its parent glucosinolate, glucoraphenin, causes cytotoxicity and stimulates apoptosis in HepG2 cells.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  15. Yusof YA, Yan KL, Hussain SN
    Anal. Quant. Cytol. Histol., 2003 Dec;25(6):332-8.
    PMID: 14714299
    To determine whether tumor marker pi glutathione transferase (GST-pi) is expressed in hepatocellular carcinoma (HCC) and other chronic liver diseases and to compare its expression with that of alpha-fetoprotein (AFP).
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism*
  16. Buskaran K, Hussein MZ, Moklas MAM, Masarudin MJ, Fakurazi S
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071389 DOI: 10.3390/ijms22115786
    Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  17. Ban KC, Singh H, Krishnan R, Seow HF
    Cancer Lett, 2003 Sep 25;199(2):201-8.
    PMID: 12969793
    The aim of this study is to investigate the potential correlation between the expression of phosphorylated glycogen synthase kinase-3beta (phospho-GSK-3beta) and beta-catenin, and the mutations of beta-catenin gene at the consensus GSK-3beta phosphorylation site. The reason for this approach is to gain a better understanding of the molecular mechanisms of hepatocarcinogenesis in Malaysia. The expression of phospho-GSK-3beta and beta-catenin by immunohistochemistry and the mutations of beta-catenin were studied in 23 hepatocellular carcinoma (HCC) and surrounding tissues. Overexpression of phospho-GSK-3beta and beta-catenin was found in 12/23 (52.2%) and 13/23 (56.5%) in HCC tissues, 6/23 (26.1%) and 9/23 (39.1%) in surrounding tissues, respectively. Overexpression of beta-catenin in HCC tissues compared to the surrounding liver tissue was found to be higher in HCC tissues (p=0.015). In addition, we found that the expression of phospho-GSK-3beta was related with the accumulation of beta-catenin in surrounding tissues (p<0.05). The expression of phospho-GSK-3beta and its association with the development of HCC is reported for the first time. In addition, this is the first report from Malaysia which shows that there are no mutations at the GSK-3beta consensus phosphorylation sites on beta-catenin gene in all 23 paired HCC and surrounding tissues. This result differed from HCC in geographical areas with high aflatoxin exposure.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism*
  18. Shiue SC, Huang MZ, Tsai TF, Chang AC, Choo KB, Huang CJ, et al.
    J Biomed Sci, 2015;22:10.
    PMID: 25616743 DOI: 10.1186/s12929-015-0114-6
    Argininosuccinate synthetase (ASS) participates in urea and nitric oxide production and is a rate-limiting enzyme in arginine biosynthesis. Regulation of ASS expression appears complex and dynamic. In addition to transcriptional regulation, a novel post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. Moreover, many cancers, including hepatocellular carcinoma (HCC), have been found not to express ASS mRNA; therefore, they are auxotrophic for arginine. To study when and where ASS is expressed and whether post-transcriptional regulation is undermined in particular temporal and spatial expression and in pathological events such as HCC, we set up a transgenic mouse system with modified BAC (bacterial artificial chromosome) carrying the human ASS gene tagged with an EGFP reporter.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  19. Chia CS, Ban K, Ithnin H, Singh H, Krishnan R, Mokhtar S, et al.
    Immunol Lett, 2002 Dec 03;84(3):163-72.
    PMID: 12413732
    This is the first report on the detection of IL-18, IFN-gamma and IL-10 proteins in hepatocelllular carcinoma. In the apparently normal surrounding tissue, 13 out of 17 paired specimens showed positive immunoreactivity to IL-18 (76.5%) compared with six out of 17 in the tumour portion (35.3% of specimens). Thus, a significantly higher number of IL-18 positive specimens was found in the hepatocytes of apparently normal surrounding tissue compared with the tumour (P=0.018). In contrast, the number of specimens with positive immunoreactivity to the antibody against the Th1 cytokine, IFN-gamma expression in the hepatocytes was lower. Only one specimen from the apparently normal surrounding tissue (one out of 17; 5.9%) and three other specimens from the tumour portion (three out of 17; 17.6%) had positive immunoreactivity. Similarly, the expression of the Th2 cytokine, IL-10 in normal (four out of 17; 23.5%) and tumour portions (five out of 17; 29.4%) was also low. Thus, there did not appear to be predominant Th2 immune response as denoted by IL-10 expression. Using the Spearman correlation rank test, a significant correlation between IL-18 expression in the apparently normal surrounding tissue and high alpha-foetoprotein (AFP) levels of >350 IU/l. No correlation between IL-18 expression in the tumour portion and clinicopathological factors was found. There was also no correlation found between IL-18 and the other cytokines, namely, IFN-gamma and IL-10 expression These new findings provide additional information on the type of cytokines expressed in the tumour microenvironment and give a further insight into the role of cytokines in the pathogenesis of cancer which is critical for the development of effective immunotherapeutic approaches for cancer therapy in the future.
    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
  20. Tajul Arifin K, Sulaiman S, Md Saad S, Ahmad Damanhuri H, Wan Ngah WZ, Mohd Yusof YA
    BMC Cancer, 2017 12 21;17(1):879.
    PMID: 29268718 DOI: 10.1186/s12885-017-3883-3
    BACKGROUND: Chlorella vulgaris (ChV), a unicellular green algae has been reported to have anticancer and antioxidant effects. The aim of this study was to determine the chemopreventive effect of ChV on liver cancer induced rats by determining the level and expression of several liver tumour markers.

    METHODS: Male Wistar rats (200-250 g) were divided into 4 groups according to the diet given: control group (normal diet), ChV group with three different doses (50, 150 and 300 mg/kg body weight), liver cancer- induced group (choline deficient diet + 0.1% ethionine in drinking water or CDE group), and the treatment group (CDE group treated with three different doses of ChV). Rats were killed at 0, 4, 8 and 12 weeks of experiment and blood and tissue samples were taken from all groups for the determination of tumour markers expression alpha-fetoprotein (AFP), transforming growth factor-β (TGF-β), M2-pyruvate kinase (M2-PK) and specific antigen for oval cells (OV-6).

    RESULTS: Serum level of TGF-β increased significantly (p < 0.05) in CDE rats. However, ChV at all doses managed to decrease (p < 0.05) its levels to control values. Expressions of liver tumour markers AFP, TGF-β, M2-PK and OV-6 were significantly higher (p < 0.05) in tissues of CDE rats when compared to control showing an increased number of cancer cells during hepatocarcinogenesis. ChV at all doses reduced their expressions significantly (p < 0.05).

    CONCLUSIONS: Chlorella vulgaris has chemopreventive effect by downregulating the expression of tumour markers M2-PK, OV-6, AFP and TGF-β, in HCC-induced rats.

    Matched MeSH terms: Carcinoma, Hepatocellular/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links