Displaying publications 1 - 20 of 806 in total

Abstract:
Sort:
  1. Ab Halim MH, Nor Anuar A, Azmi SI, Jamal NS, Wahab NA, Ujang Z, et al.
    Bioresour Technol, 2015 Jun;185:445-9.
    PMID: 25851807 DOI: 10.1016/j.biortech.2015.03.024
    With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1). The COD/N ratio of the influent wastewater was 8. The results revealed that granules developed at 50°C have the highest average diameter, (3.36mm) with 98.17%, 94.45% and 72.46% removal efficiency observed in the system for COD, ammonia and phosphate, respectively. This study also demonstrated the capabilities of AGS formation at high temperatures which is suitable to be applied for hot climate conditions.
    Matched MeSH terms: Climate
  2. Ab Lah R, Kelaher BP, Bucher D, Benkendorff K
    Mar Environ Res, 2018 Oct;141:100-108.
    PMID: 30119918 DOI: 10.1016/j.marenvres.2018.08.009
    Rising levels of atmospheric carbon dioxide are driving ocean warming and acidification. This could cause stress resulting in decreases in nutritional quality of marine species for human consumption, if environmental changes go beyond the optimal range for harvested species. To evaluate this, we used ambient and near-future elevated temperatures and pCO2 to assess impacts on the proximate nutritional composition (moisture, ash, protein, and lipids), fatty acids and trace elements of the foot tissue of Turbo militaris, a commercially harvested marine snail from south-eastern Australia. In a fully orthogonal design, the snails were exposed to ambient seawater conditions (22 ± 0.2 °C, pH 8.13 ± 0.01-450 μatm pCO2), ocean warming (25 ± 0.05 °C), pCO2 ocean acidification (pH 7.85 ± 0.02, ∼880 μatm pCO2) or a combination of both in controlled flow-through seawater mesocosms for 38 days. Moisture, ash, protein and total lipid content of the foot tissue in the turban snails was unaffected by ocean warming or acidification. However, ocean warming caused a reduction in healthful polyunsaturated fatty acids (PUFA) relative to saturated fatty acids (SFA). Under future warming and acidification conditions, there was a significant 3-5% decrease in n-3 fatty acids, which contributed to a decrease in the n-3/n-6 fatty acid ratio. The decrease in n-3 PUFAs, particularly Eicopentanoic acid (EPA), is a major negative outcome from ocean warming, because higher n-3/n-6 ratios in seafood are desirable for human health. Furthermore, ocean warming was found to increase levels of zinc in the tissues. Calcium, iron, macroelements, microelements and the composition of toxic elements did not appear to be affected by ocean climate change. Overall, the major impact from ocean climate change on seafood quality is likely to be a decrease in healthy polyunsaturated fatty acids at higher temperatures.
    Matched MeSH terms: Climate Change*
  3. Abasi F, Raja NI, Mashwani ZU, Ehsan M, Ali H, Shahbaz M
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128379.
    PMID: 38000583 DOI: 10.1016/j.ijbiomac.2023.128379
    Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.
    Matched MeSH terms: Climate Change
  4. Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, et al.
    Plant Biotechnol J, 2016 Apr;14(4):1095-8.
    PMID: 26360509 DOI: 10.1111/pbi.12467
    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.
    Matched MeSH terms: Climate Change
  5. Abdul-Kadir, M.A., Ariffin, J.
    ASM Science Journal, 2012;6(2):128-137.
    MyJurnal
    This paper reviews the advances made on studies related to bank erosion. Bank erosion has been an area of interest by researchers in geological, geotechnical, hydraulic, hydrology and river engineering disciplines. With anticipated global challenges from climate change impacts, bank erosion studies could support challenges faced in ensuring sustainable environmental management. The evolution in the theoretical and laboratory findings have led to the advances in bank erosion and contributed to new knowledge in the said field. This review summarises the findings of previous investigators including measurements approach and prediction of rates of bank erosion through the use of physical models and numerical approach.
    Matched MeSH terms: Climate Change
  6. Abdul-Manan AF, Baharuddin A, Chang LW
    Eval Program Plann, 2015 Oct;52:39-49.
    PMID: 25898073 DOI: 10.1016/j.evalprogplan.2015.03.007
    Theory-based evaluation (TBE) is an effectiveness assessment technique that critically analyses the theory underlying an intervention. Whilst its use has been widely reported in the area of social programmes, it is less applied in the field of energy and climate change policy evaluations. This paper reports a recent study that has evaluated the effectiveness of the national biofuel policy (NBP) for the transport sector in Malaysia by adapting a TBE approach. Three evaluation criteria were derived from the official goals of the NBP, those are (i) improve sustainability and environmental friendliness, (ii) reduce fossil fuel dependency, and (iii) enhance stakeholders' welfare. The policy theory underlying the NBP has been reconstructed through critical examination of the policy and regulatory documents followed by a rigorous appraisal of the causal link within the policy theory through the application of scientific knowledge. This study has identified several weaknesses in the policy framework that may engender the policy to be ineffective. Experiences with the use of a TBE approach for policy evaluations are also shared in this report.
    Matched MeSH terms: Climate Change*
  7. Abdul-Mutalib, N.A., Syafinaz, A.N., Sakai, K., Shirai, Y.
    MyJurnal
    Foodborne disease has been associated with microorganisms like bacteria, fungi, viruses and parasites. Most commonly, the outbreaks take place due to the ingestion of pathogenic bacteria like Salmonella Typhi, Escherichia coli, Staphylococcus aureus, Vibrio cholera, Campylobacter jejuni, and Listeria monocytogenes. The disease usually happens as a result of toxin secretion of the microorganisms in the intestinal tract of the infected person. Usually, the level of hygiene in the food premises reflect the quality of the food item, hence restaurant or stall with poor sanitary condition is said to be the contributor to food poisoning outbreak. In Malaysia, food poisoning cases are not rare because the hot and humid climate of this country is very suitable for the growth of the foodborne bacteria. The government is also implementing strict rules to ensure workers and owners of food premises prioritize the cleanliness of their working area. Training programme for food handlers can also help them to implement hygiene as a routine in a daily basis. A lot of studies have been done to reduce foodborne diseases. The results can give information about the types of microorganisms, and other components that affect their growth. The result is crucial to determine how the spread of foodborne bacteria can be controlled safely and the outbreak can be reduced.
    Matched MeSH terms: Climate
  8. Abdullah AR, Sinnakkannu S, Tahir NM
    Bull Environ Contam Toxicol, 2001 Jun;66(6):762-9.
    PMID: 11353379
    Matched MeSH terms: Tropical Climate
  9. Abdullah P, Abdullah SMS, Jaafar O, Mahmud M, Khalik WMAWM
    Mar Pollut Bull, 2015 Dec 15;101(1):378-385.
    PMID: 26476861 DOI: 10.1016/j.marpolbul.2015.10.014
    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed.
    Matched MeSH terms: Tropical Climate
  10. Abdullah SA, Hezri AA
    Environ Manage, 2008 Nov;42(5):907-17.
    PMID: 18626684 DOI: 10.1007/s00267-008-9178-3
    Agricultural expansion and deforestation are spatial processes of land transformation that impact on landscape pattern. In peninsular Malaysia, the conversion of forested areas into two major cash crops--rubber and oil palm plantations--has been identified as driving significant environmental change. To date, there has been insufficient literature studying the link between changes in landscape patterns and land-related development policies. Therefore, this paper examines: (i) the links between development policies and changes in land use/land cover and landscape pattern and (ii) the significance and implications of these links for future development policies. The objective is to generate insights on the changing process of land use/land cover and landscape pattern as a functional response to development policies and their consequences for environmental conditions. Over the last century, the development of cash crops has changed the country from one dominated by natural landscapes to one dominated by agricultural landscapes. But the last decade of the century saw urbanization beginning to impact significantly. This process aligned with the establishment of various development policies, from land development for agriculture between the mid 1950s and the 1970s to an emphasis on manufacturing from the 1980s onward. Based on a case study in Selangor, peninsular Malaysia, a model of landscape pattern change is presented. It contains three stages according to the relative importance of rubber (first stage: 1900--1950s), oil palm (second stage: 1960s--1970s), and urban (third stage: 1980s--1990s) development that influenced landscape fragmentation and heterogeneity. The environmental consequences of this change have been depicted through loss of biodiversity, geohazard incidences, and the spread of vector-borne diseases. The spatial ecological information can be useful to development policy formulation, allowing diagnosis of the country's "health" and sustainability. The final section outlines the usefulness of landscape analysis in the policy-making process to prevent further fragmentation of the landscape and forest loss in Malaysia in the face of rapid economic development.
    Matched MeSH terms: Tropical Climate
  11. Abdullah SA
    J Environ Sci (China), 2003 Mar;15(2):267-70.
    PMID: 12765270
    This paper presents the pattern and changes of fragmented forest in relation with changes of total forest cover in the state of Selangor in three decades. In this study, inventoried forest cover maps of Selangor in 1971/1972, 1981/1982 and 1991/1992 produced by the Forestry Department of Peninsular Malaysia were digitized to examine the changes in area and number of fragmented forest. Results showed that in 1971/1972, 16 fragmented forests were identified in Selangor. All fragmented forests were identified as dipterocarp forest. A decade later the number of fragmented forests increased by approximately 44% (23). Of the 23 fragmented forests, two were peat swamp forests whereas the remaining were dipterocarp forests. In 1991/1992 the number of fragmented forests (12) was reduced by 47.8%. Two of the fragmented forests were identified as peat swamp forest, seven dipterocarp forest and the other three was mixed of dipterocarp forests and plantation forests. Fragmentation of both dipterocarp and peat swamp forests occurred profoundly during the period between 1971/1972 and 1981/1982, which consequently increased the number of fragmented forests compared with before the period of 1971/1972 where fragmentation happened only at dipterocarp forests. However, many fragmented forests vanished between the 1981/1982 and 1991/1992 periods.
    Matched MeSH terms: Tropical Climate
  12. Abdullah SNF, Ismail A, Juahir H, Lananan F, Hashim NM, Ariffin N, et al.
    Environ Sci Pollut Res Int, 2021 Jul;28(27):35613-35627.
    PMID: 33666850 DOI: 10.1007/s11356-021-12772-6
    Rainwater harvesting is an effective alternative practice, particularly within urban regions, during periods of water scarcity and dry weather. The collected water is mostly utilized for non-potable household purposes and irrigation. However, due to the increase in atmospheric pollutants, the quality of rainwater has gradually decreased. This atmospheric pollution can damage the climate, natural resources, biodiversity, and human health. In this study, the characteristics and physicochemical properties of rainfall were assessed using a qualitative approach. The three-year (2017-2019) data on rainfall in Peninsular Malaysia were analysed via multivariate techniques. The physicochemical properties of the rainfall yielded six significant factors, which encompassed 61.39% of the total variance as a result of industrialization, agriculture, transportation, and marine factors. The purity of rainfall index (PRI) was developed based on subjective factor scores of the six factors within three categories: good, moderate, and bad. Of the 23 variables measured, 17 were found to be the most significant, based on the classification matrix of 98.04%. Overall, three different groups of similarities that reflected the physicochemical characteristics were discovered among the rain gauge stations: cluster 1 (good PRI), cluster 2 (moderate PRI), and cluster 3 (bad PRI). These findings indicate that rainwater in Peninsular Malaysia was suitable for non-potable purposes.
    Matched MeSH terms: Climate
  13. Abu Samah A, Shaffril HAM
    Environ Sci Pollut Res Int, 2020 Apr;27(10):11277-11289.
    PMID: 31965496 DOI: 10.1007/s11356-019-07143-1
    The existing literature have demonstrated a considerable amount of existing studies that merely interest on scientific perspectives by examining the physical environmental changes rather than conducting social-based studies that allow for the comparison of adaptation ability between mainland and island small-scale fishermen. Therefore, the current research attempts to fill this gap by investigating the adaptation level of mainland and island small-scale fishermen towards climate changes for the purpose of further identifying any significant differences regarding their adaptation aspects. The primary aim of the current research is to conduct a comparative study with the purpose of assessing the environmental change adaptation ability between the mainland and the islander small-scale fishermen. In the context of the current research, a quantitative approach was employed by selecting a total of 600 samples through several levels of cluster sampling. The instrument for the study was developed based on the 16 adaptation variables that were suggested within the adaptation framework proposed by the International Union for Conservation of Nature and Natural Resources. The data were analysed using SPSS, whereby to achieve the study's main objective, inferential analysis which refers to the independent t test was performed to examine any possible significant difference that might exist. In regard to this matter, various significant differences between the islander and the mainland fishermen managed to be detected in 10 adaptation aspects out of the 16 adaptation variables which include the capacity to adapt to change (monetary and emotional adaptability); the level of interest in adapting to change; the ability to plan, learn, and reorganize; and attachment to occupation. Accordingly, a number of recommendations were discussed at the end of this study which is hoped to assist the involved and relevant parties in arranging better adjustment approaches for small-scale fishermen in Malaysia.
    Matched MeSH terms: Climate Change*
  14. Abu-Bakar NA, Roslan AM, Hassan MA, Rahman MHA, Ibrahim KN, Abd Rahman MD, et al.
    Sci Rep, 2023 Sep 07;13(1):14767.
    PMID: 37679379 DOI: 10.1038/s41598-023-28487-2
    Environmental impact assessment of glucose production from paddy milling waste, known as empty and partially filled paddy grain (EPFG) in Malaysia, was performed using life cycle assessment (LCA). Three scenarios were conducted based on system expansion of the process. The LCA was conducted using ReCiPe methodology at midpoint and endpoint levels. The results indicate that enzymatic hydrolysis phase is the hotspot in the conversion system due to enzyme production. In addition, the agriculture phase also contributed to negative impacts, especially towards climate change. An improved environmental load was observed in scenario 2 when all EPFG fractionation was utilised to replace fossil-based electricity. Sensitivity analysis showed an increase in glucose yield leads to reduced environmental impact. Thus, the LCA study suggests that the conversion process of EPFG could further benefit and improve the paddy industry waste management with low impact contribution to the environment compared to other feedstock used for glucose production.
    Matched MeSH terms: Climate Change
  15. Abubakar A, Ishak MY, Makmom AA
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54339-54361.
    PMID: 34402002 DOI: 10.1007/s11356-021-15890-3
    The interaction and the interplay of climate change with oil palm production in the Southeast Asia region are of serious concern. This particularly applies in Malaysia due to its rank as the second largest palm oil producer in the world. The anthropogenic activities and the agroecological practices in oil palm plantation, including excessive use of fertilisers, bush fire due to land clearing, and cultivation on peatland, have exacerbated the effects of climate change featuring extreme events, drought, flooding, heatwave, as well as infestation of pest and diseases. These adverse impacts on oil palm production highlight the significance of deploying effective adaptation strategies. The study aims to examine the impact of climate change on oil palm production and identify the farmers' adaptation strategies to the impacts of climate change in Malaysia. This study was conducted a comprehensive review of the articles published from 2000 to 2021 in the contexts of climate change and oil palm production in Malaysia. The review shows that climate change has a range of impacts on the oil palm production in Malaysia. As a result, several adaptation options were identified, such as breeding of hybrid varieties that are tolerant and resistant to heat; sustainable management of soil; pit and tranches to enhance water management in plantation areas; minimal use of fertilisers, herbicides, and pesticides; zero burning; and minimum tillage. The reviewed studies recommended the following to mitigate the adverse impacts of climate change: sustainable national policy on climate change, conservation of the existing carbon stock, effective management of tropical rainforest biodiversity, afforestation for carbon sequestration, and reduction in greenhouse gas (GHG) emission.
    Matched MeSH terms: Climate Change*
  16. Abubakar AA, Zulkifli I, Goh YM, Kaka U, Sabow AB, Imlan JC, et al.
    Foods, 2021 Jan 26;10(2).
    PMID: 33530479 DOI: 10.3390/foods10020252
    This study's objective was to evaluate the effects of distance and stocking density on physicochemical properties and oxidative stability of meat and acute-phase proteins in Brahman crossbred cattle transported by road under hot and humid tropical conditions. Sixty Brahman crossbred heifers were subjected to road transport from a cattle feedlot farm located in Universiti Putra Malaysia (UPM), Serdang, to a commercial ruminant abattoir in Shah Alam, Selangor. Animals were assigned to long and short distances and high, medium, and low stocking densities. The results revealed that the intensity of response significantly increased in meat samples from animals subjected to long-distance transportation and higher stocking density. Alpha-1-acid glycoprotein and serum amyloid-A values increased considerably and were different from the baseline values recorded at preload. In conclusion, the current results revealed that the color, pH, shear force values, water holding capacity (WHC), glycogen level, and malondilaldehyde assay (MDA) concentrations in meat and acute-phase proteins (APP) were affected by both distances and stocking densities, as evidenced by the significant changes recorded from the parameters above.
    Matched MeSH terms: Tropical Climate
  17. Abushammala MF, Basri NE, Elfithri R
    Environ Monit Assess, 2013 Dec;185(12):9967-78.
    PMID: 23797636
    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.
    Matched MeSH terms: Tropical Climate
  18. Adebayo TS, Rjoub H, Akadiri SS, Oladipupo SD, Sharif A, Adeshola I
    Environ Sci Pollut Res Int, 2022 Apr;29(16):24248-24260.
    PMID: 34822076 DOI: 10.1007/s11356-021-17524-0
    In the face of mounting climate change challenges, reducing emissions has emerged as a key driver of environmental sustainability and sustainable growth. Despite the fact that research has been conducted on the environmental Kuznets curve (EKC), few researchers have analyzed this in the light of economic complexity. Thus, the current research assesses the effect of economic complexity on CO2 emissions in the MINT nations while taking into account the role of financial development, economic growth, and energy consumption for the period between 1990 and 2018. Using the novel method of moments quantile regression (MMQR) with fixed effects, an inverted U-shape interrelationship is found between economic growth and CO2 emissions, thus validating the EKC hypothesis. Energy consumption and economic complexity increase CO2 emissions significantly from the 1st to 9th quantiles. Furthermore, there is no significant interconnection between financial development and CO2 emissions across all quantiles (1st to 9th). The outcomes of the causality test reveal a feedback causal connection between economic growth and CO2, while a unidirectional causality is established from economic complexity and energy use to CO2 emissions in the MINT nations. Based on the findings, we believe that governments should stimulate the financial sector to provide domestic credit facilities to industrialists, investors, and other business enterprises on more favorable terms so that innovative technologies for environmental protection can be implemented with other policy recommendations.
    Matched MeSH terms: Climate Change
  19. Adib MNM, Rowshon MK, Mojid MA, Habibu I
    Sci Rep, 2020 05 20;10(1):8336.
    PMID: 32433561 DOI: 10.1038/s41598-020-65114-w
    Climate change-induced spatial and temporal variability of stremflow has significant implications for hydrological processes and water supplies at basin scale. This study investigated the impacts of climate change on streamflow of the Kurau River Basin in Malaysia using a Climate-Smart Decision Support System (CSDSS) to predict future climate sequences. For this, we used 25 reliazations consisting from 10 Global Climate Models (GCMs) and three IPCC Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5). The generated climate sequences were used as input to Soil and Water Assessment Tool (SWAT) to simulate projected changes in hydrological processes in the basin over the period 2021-2080. The model performed fairly well for the Kurau River Basin, with coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE) and Percent Bias (PBIAS) of 0.65, 0.65 and -3.0, respectively for calibration period (1981-1998) and 0.60, 0.59 and -4.6, respectively for validation period (1996-2005). Future projections over 2021-2080 period show an increase in rainfall during August to January (relatively wet season, called the main irrigation season) but a decrease in rainfall during February to July (relatively dry season, called the off season). Temperature projections show increase in both the maximum and minimum temperatures under the three RCP scenarios, with a maximum increase of 2.5 °C by 2021-2080 relative to baseline period of 1976-2005 under RCP8.5 scenario. The model predicted reduced streamflow under all RCP scenarios compared to the baseline period. Compared to 2021-2050 period, the projected streamflow will be higher during 2051-2080 period by 1.5 m3/s except in February for RCP8.5. The highest streamflow is predicted during August to December for both future periods under RCP8.5. The seasonal changes in streamflow range between -2.8% and -4.3% during the off season, and between 0% (nil) and -3.8% during the main season. The assessment of the impacts of climatic variabilities on the available water resources is necessary to identify adaptation strategies. It is supposed that such assessment on the Kurau River Basin under changing climate would improve operation policy for the Bukit Merah reservoir located at downstream of the basin. Thus, the predicted streamflow of the basin would be of importance to quantify potential impacts of climate change on the Bukit Merah reservoir and to determine the best possible operational strategies for irrigation release.
    Matched MeSH terms: Climate Change
  20. Adlina, S., Narimah, A.H.H., Mazlin, M.M., Nuraliza, A.S., Hakimi, Z.A., Soe, S.A., et al.
    MyJurnal
    This study was conducted to determine the patterns of disease and treatment at two disaster sites. Studies prior to this have shown that all natural disasters are unique in that each affected region of the world have different social, economic and health backgrounds. However, similarities exist among the health effects of different disasters which if recognized can ensure that health and emergency medical relief and limited resources are well managed. This study found that although Aceh and Balakot were two totally different areas with reference to locality and climate it was noticed that the patterns of disease two months post disaster are similar the commonest being respiratory conditions followed by musculoskeletal conditions and gastrointestinal conditions. For the treatment patterns it was observed that the two areas prescribed almost similar, types of medicine mainly for gastrointestinal and respiratory systems. However in Aceh, there were more skin treatment and in Balakot there was more usage of musculoskeletal drugs.
    Matched MeSH terms: Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links