Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Jarolim P, Palek J, Amato D, Hassan K, Sapak P, Nurse GT, et al.
    Proc Natl Acad Sci U S A, 1991 Dec 15;88(24):11022-6.
    PMID: 1722314
    Southeast Asian ovalocytosis (SAO) is a hereditary condition that is widespread in parts of Southeast Asia. The ovalocytic erythrocytes are rigid and resistant to invasion by various malarial parasites. We have previously found that the underlying defect in SAO involves band 3 protein, the major transmembrane protein, which has abnormal structure and function. We now report two linked mutations in the erythrocyte band 3 gene in SAO: (i) a deletion of codons 400-408 and (ii) a substitution, A----G, in the first base of codon 56 leading to substitution of Lys-56 by Glu-56. The first defect leads to a deletion of nine amino acids in the boundary of cytoplasmic and membrane domains of band 3. This defect has been detected in all 30 ovalocytic subjects from Malaysia, the Philippines, and two unrelated coastal regions of Papua New Guinea, whereas it was absent in all 30 controls from Southeast Asia and 20 subjects of different ethnic origin from the United States. The Lys-56----Glu substitution has likewise been found in all SAO subjects. However, it has also been detected in 5 of the 50 control subjects, suggesting that it represents a linked polymorphism. We conclude that the deletion of codons 400-408 in the band 3 gene constitutes the underlying molecular defect in SAO.
    Matched MeSH terms: DNA/isolation & purification
  2. Fernie BA, Finlay A, Price D, Chan E, Orren A, Joysey VC, et al.
    Exp. Clin. Immunogenet., 1996;13(2):92-103.
    PMID: 9063701
    Five polymorphisms in the C6 and C7 genes have been investigated in seven ethnic groups. The allele frequencies are broadly similar in most groups except C7 M/N which is monomorphic in our group of Africans, and C6 MspI and C7 S367T where the allele frequencies in African and Cape Coloured subjects are very different from the other ethnic groups. There is very little allelic association except between C6 A/B and C6 MspI. Seventeen of the 32 possible haplotypes have been observed, suggesting that much recombination has taken place. We describe a new method for the investigation of the MspI RFLP located in intron 3 of C6 (approximately 3 kbp 3' from exon 3 and 1.5 kbp 5' from exon 4) and its molecular basis, together with an improved method for the isolation of DNA from stored serum.
    Matched MeSH terms: DNA/isolation & purification*
  3. Chang YM, Swaran Y, Phoon YK, Sothirasan K, Sim HT, Lim KB, et al.
    Forensic Sci Int Genet, 2009 Jun;3(3):e77-80.
    PMID: 19414156 DOI: 10.1016/j.fsigen.2008.07.007
    17 Y-STRs (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) have been analyzed in 320 male individuals from Sarawak, an eastern state of Malaysia on the Borneo island using the AmpFlSTR Y-filer (Applied Biosystems, Foster City, CA). These individuals were from three indigenous ethnic groups in Sarawak comprising of 103 Ibans, 113 Bidayuhs and 104 Melanaus. The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three groups. Analysis of molecular variance (AMOVA) indicated that 87.6% of the haplotypic variation was found within population and 12.4% between populations (fixation index F(ST)=0.124, p=0.000). This study has revealed that the indigenous populations in Sarawak are distinctly different to each other, and to the three major ethnic groups in Malaysia (Malays, Chinese and Indians), with the Melanaus having a strikingly high degree of shared haplotypes within. There are rare unusual variants and microvariants that were not present in Malaysian Malay, Chinese or Indian groups. In addition, occurrences of DYS385 duplications which were only noticeably present in Chinese group previously was also observed in the Iban group whilst null alleles were detected at several Y-loci (namely DYS19, DYS392, DYS389II and DYS448) in the Iban and Melanau groups.
    Matched MeSH terms: DNA/isolation & purification
  4. Tan SC, Yiap BC
    J Biomed Biotechnol, 2009;2009:574398.
    PMID: 20011662 DOI: 10.1155/2009/574398
    Extraction of DNA, RNA, and protein is the basic method used in molecular biology. These biomolecules can be isolated from any biological material for subsequent downstream processes, analytical, or preparative purposes. In the past, the process of extraction and purification of nucleic acids used to be complicated, time-consuming, labor-intensive, and limited in terms of overall throughput. Currently, there are many specialized methods that can be used to extract pure biomolecules, such as solution-based and column-based protocols. Manual method has certainly come a long way over time with various commercial offerings which included complete kits containing most of the components needed to isolate nucleic acid, but most of them require repeated centrifugation steps, followed by removal of supernatants depending on the type of specimen and additional mechanical treatment. Automated systems designed for medium-to-large laboratories have grown in demand over recent years. It is an alternative to labor-intensive manual methods. The technology should allow a high throughput of samples; the yield, purity, reproducibility, and scalability of the biomolecules as well as the speed, accuracy, and reliability of the assay should be maximal, while minimizing the risk of cross-contamination.
    Matched MeSH terms: DNA/isolation & purification*
  5. Karthipan SN, George E, Jameela S, Lim WF, Teh LK, Lee TY, et al.
    Int J Lab Hematol, 2011 Oct;33(5):540-4.
    PMID: 21884505 DOI: 10.1111/j.1751-553X.2011.01304.x
    Dried blood spots (DBS) are currently the recommended sample collection method for newborn screening programmes in America. Early diagnosis of beta-thalassaemia screening is essential as it provides an added advantage especially in sickle cell disease. Beta-thalassaemia frequency is high in many poor countries, and the cost of using commercial DNA extraction kits can be prohibitive. Our study assessed three methods that use minimal reagents and materials to extract DNA from DBS for beta-thalassaemia identification.
    Matched MeSH terms: DNA/isolation & purification*
  6. Abdul Rahman Z, Choay-Hoong L, Mat Khairuddin R, Ab Razak S, Othman AS
    J Genet, 2012 Aug;91(2):e82-5.
    PMID: 22932425
    Matched MeSH terms: DNA/isolation & purification
  7. Looi ML, Zakaria H, Osman J, Jamal R
    Clin. Lab., 2012;58(3-4):307-12.
    PMID: 22582505
    Saliva has been suggested as an attractive resource for evaluating physiological and pathological conditions in humans. This study aims to evaluate saliva sampling as an alternative to blood sampling for molecular testing.
    Matched MeSH terms: DNA/isolation & purification
  8. Zakaria Z, Umi SH, Mokhtar SS, Mokhtar U, Zaiharina MZ, Aziz AT, et al.
    Genet. Mol. Res., 2013;12(1):302-11.
    PMID: 23408417 DOI: 10.4238/2013.February.4.4
    We developed an alternative method to extract DNA and RNA from clotted blood for genomic and molecular investigations. A combination of the TRIzol method and the QIAamp spin column were used to extract RNA from frozen clotted blood. Clotted blood was sonicated and then the QIAamp DNA Blood Mini Kit was used for DNA extraction. Extracted DNA and RNA were adequate for gene expression analysis and copy number variation (CNV) genotyping, respectively. The purity of the extracted RNA and DNA was in the range of 1.8-2.0, determined by absorbance ratios of A(260):A(280). Good DNA and RNA integrity were confirmed using gel electrophoresis and automated electrophoresis. The extracted DNA was suitable for qPCR and microarrays for CNV genotyping, while the extracted RNA was adequate for gene analysis using RT-qPCR.
    Matched MeSH terms: DNA/isolation & purification*
  9. Ongkudon CM, Kansil T, Wong C
    J Sep Sci, 2014 Mar;37(5):455-64.
    PMID: 24376196 DOI: 10.1002/jssc.201300995
    To date, the number of published reports on the large-volume preparation of polymer-based monolithic chromatography adsorbents is still lacking and is of great importance. Many critical factors need to be considered when manufacturing a large-volume polymer-based monolith for chromatographic applications. Structural integrity, validity, and repeatability are thought to be the key factors determining the usability of a large-volume monolith in a separation process. In this review, we focus on problems and solutions pertaining to heat dissipation, pore size distribution, "wall channel" effect, and mechanical strength in monolith preparation. A template-based method comprising sacrificial and nonsacrificial techniques is possibly the method of choice due to its precise control over the porous structure. However, additional expensive steps are usually required for the template removal. Other strategies in monolith preparation are also discussed.
    Matched MeSH terms: DNA/isolation & purification
  10. Azhim A, Syazwani N, Morimoto Y, Furukawa KS, Ushida T
    J Biomater Appl, 2014 Jul;29(1):130-41.
    PMID: 24384523 DOI: 10.1177/0885328213517579
    A novel decellularization method using sonication treatment is described. Sonication treatment is the combination of physical and chemical agents. These methods will disrupt cell membrane and release cell contents to external environments. The cell removal was facilitated by subsequent rinsing of sodium dodecyl sulfate detergents. Sonication treatment is used in the preparation of complete decellularized bioscaffolds. The aim of this study is to confirm the usefulness of sonication treatment for preparation of biological scaffolds. In this study, samples of aortic tissues are decellularized by sonication treatment at frequency of 170 kHz in 0.1% and 2% sodium dodecyl sulfate detergents for 10-h treatment time. The relation between decellularization and sonication parameters such as dissolved oxygen concentration, conductivity, and pH is investigated. Histological analysis and biomechanical testing is performed to evaluate cell removal efficiency as well as changes in biomechanical properties. Minimal inflammation response elicit by bioscaffolds is confirmed by xenogeneic implantation and immunohistochemistry. Sonication treatment is able to produce complete decellularized tissue suggesting that these treatments could be applied widely as one of the decellularization method.
    Matched MeSH terms: DNA/isolation & purification
  11. Khatir NM, Abdul-Malek Z, Banihashemian SM
    Sensors (Basel), 2014;14(10):19229-41.
    PMID: 25320908 DOI: 10.3390/s141019229
    The fabrication of Metal-DNA-Metal (MDM) structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25-55 °C) and magnetic fields (0-1200 mT) on the current-voltage (I-V) features of Au-DNA-Au (GDG) structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.
    Matched MeSH terms: DNA/isolation & purification*
  12. Abd Rahim MR, Kho SL, Kuppusamy UR, Tan JA
    Clin. Lab., 2015;61(9):1325-30.
    PMID: 26554253
    BACKGROUND: Beta-thalassemia is the most common genetic disorder in Malaysia. Confirmation of the β-globin gene mutations involved in thalassemia is usually carried out by molecular analysis of DNA extracted from leukocytes in whole blood. Molecular analysis is generally carried out when affected children are around 1 - 2 years as clinical symptoms are expressed during this period. Blood taking at this age can be distressing for the child. High yield and pure DNA extracted from non-invasive sampling methods can serve as alternative samples in molecular studies for genetic diseases especially in pediatric cases.

    METHODS: In this study, mouthwash, saliva, and buccal cytobrush samples were collected from β-thalassemia major patients who had previously been characterized using DNA extracted from peripheral blood. DNA was extracted from mouthwash, saliva, and buccal cytobrush samples using the conventional inexpensive phenol-chloroform method and was measured by spectrophotometry for yield and purity. Molecular characterization of β-globin gene mutations was carried out using the amplification refractory mutation system (ARMS).

    RESULTS: DNA extracted from mouthwash, saliva, and buccal cytobrush samples produced high concentration and pure DNA. The purified DNA was successfully amplified using ARMS. Results of the β-globin gene mutations using DNA from the three non-invasive samples were in 100% concordance with results from DNA extracted from peripheral blood.

    CONCLUSIONS: The conventional in-house developed methods for non-invasive sample collection and DNA extraction from these samples are effective and negate the use of more expensive commercial kits. In conclusion, DNA extracted from mouthwash, saliva, and buccal cytobrush samples provided sufficiently high amounts of pure DNA suitable for molecular analysis of β-thalassemia.

    Matched MeSH terms: DNA/isolation & purification*
  13. Ali ME, Asing, Hamid SB, Razzak MA, Rashid NR, Al Amin M, et al.
    PMID: 26062948 DOI: 10.1080/19440049.2015.1058535
    Malayan box turtle (Cuora amboinensis) has been a wildlife-protected vulnerable turtle species in Malaysia since 2005. However, because of its purported usage in traditional medicine, tonic foods and feeds, clandestine black market trade is rampant. Several polymerase chain reaction (PCR) assays for the taxonomic detection and classification of turtle species have been proposed. These assays are based on long-length target amplicons which are assumed to break down under compromised states and, hence, might not be suitable for the forensic tracing and tracking of turtle trafficking. For the first time this paper develops a very short-amplicon-length PCR assay (120 bp) for the detection of Malayan box turtle meat in raw, processed and mixed matrices, and experimental evidence is produced that such an assay is not only more stable and reliable but also more sensitive than those previously published. We checked the assay specificity against 20 different species and no cross-species detection was observed. The possibility of any false-negative detection was eliminated by a universal endogenous control for eukaryotes. The assay detection limit was 0.0001 ng of box turtle DNA from pure meat and 0.01% turtle meat in binary and ternary admixtures and commercial meatballs. Superior target stability and sensitivity under extreme treatments of boiling, autoclaving and microwave cooking suggested that this newly developed assay would be suitable for any forensic and/or archaeological identification of Malayan box turtle species, even in severely degraded specimens. Further, in silico studies indicated that the assay has the potential to be used as a universal probe for the detection of nine Cuora species, all of which are critically endangered.
    Matched MeSH terms: DNA/isolation & purification
  14. Ibrahim WA, Nodeh HR, Sanagi MM
    Crit Rev Anal Chem, 2016 Jul 03;46(4):267-83.
    PMID: 26186420 DOI: 10.1080/10408347.2015.1034354
    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.
    Matched MeSH terms: DNA/isolation & purification*
  15. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: DNA/isolation & purification
  16. Matsui M, Kuraishi N, Eto K, Hamidy A, Nishikawa K, Shimada T, et al.
    Mol Phylogenet Evol, 2016 09;102:305-19.
    PMID: 27374495 DOI: 10.1016/j.ympev.2016.06.009
    A fanged frog Limnonectes kuhlii was once thought to be wide-ranging in Southeast Asia, but is now confined to its type locality Java through recent phylogenetic studies, which clarified heterospecific status of non-Javanese populations, and monophyly of Bornean populations. However, large genetic differences among Bornean populations suggest occurrence of cryptic species, which we test using dense geographic sampling. We estimated the phylogenetic relationships among samples of Bornean populations together with their putative relatives from the continental Southeast Asia, using 2517bp sequences of the 12S rRNA, tRNA(val), and 16S rRNA of mitochondrial DNA, and 2367bp sequences of the NCX1, POMC, and RAG1 of nuclear genes. In the mtDNA trees, Bornean L. kuhlii-like frogs formed a monophyletic group split into 18 species lineages including L. hikidai, with the deepest phylogenetic split separating L. cintalubang from the remaining species. Almost all of these lineages co-occur geographically, and two to three lineages were found syntopically in each locality. Co-occurrence of more than one lineage may be maintained by differential morphology and microhabitat selection. These syntopic lineages should be regarded as distinct species. Our results clearly indicate that taxonomic revision is urgent to clarify many evolutionary problems of Bornean L. kuhlii-like frogs.
    Matched MeSH terms: DNA/isolation & purification
  17. Banihashemian SM, Periasamy V, Boon Tong G, Abdul Rahman S
    PLoS One, 2016;11(3):e0149488.
    PMID: 26999445 DOI: 10.1371/journal.pone.0149488
    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field.
    Matched MeSH terms: DNA/isolation & purification*
  18. Lopes-Lima M, Froufe E, Do VT, Ghamizi M, Mock KE, Kebapçı Ü, et al.
    Mol Phylogenet Evol, 2017 01;106:174-191.
    PMID: 27621130 DOI: 10.1016/j.ympev.2016.08.021
    Freshwater mussels of the order Unionida are key elements of freshwater habitats and are responsible for important ecological functions and services. Unfortunately, these bivalves are among the most threatened freshwater taxa in the world. However, conservation planning and management are hindered by taxonomic problems and a lack of detailed ecological data. This highlights the urgent need for advances in the areas of systematics and evolutionary relationships within the Unionida. This study presents the most comprehensive phylogeny to date of the larger Unionida family, i.e., the Unionidae. The phylogeny is based on a combined dataset of 1032bp (COI+28S) of 70 species in 46 genera, with 7 of this genera being sequenced for the first time. The resulting phylogeny divided the Unionidae into 6 supported subfamilies and 18 tribes, three of which are here named for the first time (i.e., Chamberlainiini nomen novum, Cristariini nomen novum and Lanceolariini nomen novum). Molecular analyses were complemented by investigations of selected morphological, anatomical and behavioral characters used in traditional phylogenetic studies. No single morphological, anatomical or behavioral character was diagnostic at the subfamily level and few were useful at the tribe level. However, within subfamilies, many tribes can be recognized based on a subset of these characters. The geographical distribution of each of the subfamilies and tribes is also presented. The present study provides important advances in the systematics of these extraordinary taxa with implications for future ecological and conservation studies.
    Matched MeSH terms: DNA/isolation & purification
  19. Ayoib A, Hashim U, Gopinath SCB, Md Arshad MK
    Appl Microbiol Biotechnol, 2017 Nov;101(22):8077-8088.
    PMID: 28942548 DOI: 10.1007/s00253-017-8493-0
    This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.
    Matched MeSH terms: DNA/isolation & purification*
  20. Gan HM, Tan MH, Lee YP, Schultz MB, Horwitz P, Burnham Q, et al.
    Mol Phylogenet Evol, 2018 01;118:88-98.
    PMID: 28966124 DOI: 10.1016/j.ympev.2017.09.022
    To further understand the evolutionary history and mitogenomic features of Australia's highly distinctive freshwater crayfish fauna, we utilized a recently described rapid mitogenome sequencing pipeline to generate 24 new crayfish mitogenomes including a diversity of burrowing crayfish species and the first for Astacopsis gouldi, the world's largest freshwater invertebrate. Whole mitogenome-based phylogeny estimates using both Bayesian and Maximum Likelihood methods substantially strengthen existing hypotheses for systematic relationships among Australian freshwater crayfish with evidence of pervasive diversifying selection and accelerated mitochondrial substitution rate among the members of the clade representing strongly burrowing crayfish that may reflect selection pressures for increased energy requirement for adaptation to terrestrial environment and a burrowing lifestyle. Further, gene rearrangements are prevalent in the burrowing crayfish mitogenomes involving both tRNA and protein coding genes. In addition, duplicated control regions were observed in two closely related Engaeus species, together with evidence for concerted evolution. This study significantly adds to the understanding of Australian freshwater crayfish evolutionary relationships and suggests a link between mitogenome evolution and adaptation to terrestrial environments and a burrowing lifestyle in freshwater crayfish.
    Matched MeSH terms: DNA/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links