Displaying publications 1 - 20 of 305 in total

Abstract:
Sort:
  1. Brenciani A, Cinthi M, Coccitto SN, Massacci FR, Albini E, Cucco L, et al.
    J Antimicrob Chemother, 2024 Apr 02;79(4):846-850.
    PMID: 38366373 DOI: 10.1093/jac/dkae039
    OBJECTIVES: To investigate the global distribution of an optrA-harbouring linezolid-resistant Enterococcus faecalis ST476 clonal lineage.

    METHODS: Comprehensive searches of the NCBI database were performed to identify published peer-reviewed articles and genomes of E. faecalis ST476. Each genome was analysed for resistome, virulome, OptrA variant and optrA genetic contexts. A phylogenetic comparison of ST476 genomes with publicly available genomes of other STs was also performed.

    RESULTS: Sixty-six E. faecalis ST476 isolates from 15 countries (China, Japan, South Korea, Austria, Denmark, Spain, Czech Republic, Colombia, Tunisia, Italy, Malaysia, Belgium, Germany, United Arab Emirates and Switzerland) mainly of human and animal origin were identified. Thirty available ST476 genomes compared with genomes of 591 STs indicated a progressive radiation of E. faecalis STs starting from ST21. The closest ancestral node for ST476 was ST1238. Thirty E. faecalis ST476 genomes exhibited 3-916 SNP differences. Several antimicrobial resistance and virulence genes were conserved among the ST476 genomes. The optrA genetic context exhibited a high degree of or complete identity to the chromosomal transposon Tn6674. Only three isolates displayed an optrA-carrying plasmid with complete or partial Tn6674. The WT OptrA protein was most widespread in the ST476 lineage.

    CONCLUSIONS: Linezolid-resistant optrA-carrying E. faecalis of the clonal lineage ST476 is globally distributed in human, animal and environmental settings. The presence of such an emerging clone can be of great concern for public health. Thus, a One Health approach is needed to counteract the spread and the evolution of this enterococcal clonal lineage.

    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  2. Al Sulayyim H, Ismail R, Al Hamid A, Mohammed B, Abdul Ghafar N
    J Infect Dev Ctries, 2024 Mar 31;18(3):371-382.
    PMID: 38635620 DOI: 10.3855/jidc.19071
    INTRODUCTION: Prevalence of antibiotic resistance (AR) during the coronavirus 2019 (COVID-19) pandemic was higher than pre-pandemic times. This study determined the prevalence and patterns of AR among Gram-positive and negative bacteria before, during and after COVID-19 in Saudi Arabia and identified the associated factors.

    METHODOLOGY: A retrospective cross-sectional study was employed to identify patients with positive AR bacteria between March 2019 and March 2022. The bacterial isolates and patients' data were identified from laboratory and medical records departments retrospectively. Binary logistic regression analysis was performed to identify the factors associated with AR and deaths. Multinominal logistic regression was applied to confirm the factors associated with AR classification.

    RESULTS: AR Gram-negative bacteria decreased during and after the pandemic. However, S. aureus showed a negligible increase in resistance rate after pandemic, while E. faecium, recorded a higher-than-average resistance rate during the pandemic. The prevalence of pan drug resistance (PDR) during the pandemic (85.7%) was higher than before (0%) and after (14.3%), p = 0.001. The length of stay and time were significant predictors for AR classification. The odds of multi drug resistance (MDR) development to PDR during the pandemic were 6 times higher than before and after (OR = 6.133, CI =, p = 0.020). Age, nationality, COVID-19 infection, smoking, liver disease, and type and number of bacteria were associated with death of patients with positive AR.

    CONCLUSIONS: Further studies are recommended to explore the prevalence of PDR and to justify the increased rates of E. faecium AR during the COVID-19 pandemic.

    Matched MeSH terms: Drug Resistance, Bacterial
  3. Gunasekara YD, Kottawatta SA, Nisansala T, Wijewickrama IJB, Basnayake YI, Silva-Fletcher A, et al.
    Zoonoses Public Health, 2024 Feb;71(1):84-97.
    PMID: 37880923 DOI: 10.1111/zph.13087
    This study aimed to investigate and compare the proportion of AMR Escherichia coli (E. coli) between urban (Dompe in the Western province) and rural (Dambana in the Sabaragamuwa province) areas in Sri Lanka. The overall hypothesis of the study is that there is a difference in the proportion of AMR E. coli between the urban and the rural areas. Faecal samples were collected from healthy humans (n = 109), dairy animals (n = 103), poultry (n = 35), wild mammals (n = 81), wild birds (n = 76), soil (n = 80) and water (n = 80) from both areas. A total of 908 E. coli isolates were tested for susceptibility to 12 antimicrobials. Overall, E. coli isolated from urban area was significantly more likely to be resistant than those isolated from rural area. The human domain of the area had a significantly higher prevalence of AMR E. coli, but it was not significantly different in urban (98%) and rural (97%) areas. AMR E. coli isolated from dairy animals, wild animals and water was significantly higher in the urban area compared with the rural area. There was no significant difference in the proportion of multidrug resistance (MDR) E. coli isolated from humans, wild animals and water between the two study sites. Resistant isolates found from water and wild animals suggest contamination of the environment. A multi-sectorial One Health approach is urgently needed to control the spread of AMR and prevent the occurrences of AMR in Sri Lanka.
    Matched MeSH terms: Drug Resistance, Bacterial
  4. Suyamud B, Chen Y, Quyen DTT, Dong Z, Zhao C, Hu J
    Sci Total Environ, 2024 Jan 10;907:167942.
    PMID: 37863226 DOI: 10.1016/j.scitotenv.2023.167942
    Aquaculture is a highly important and expanding industry in Southeast Asia (SEA). An upcoming problem is the emergence of antibiotic resistant pathogens due to the unchecked use of antibiotics and human clinical practices. This review focused insight into the occurrence of antimicrobial resistance (AMR) and strategies from SEA aquaculture based on the original research publication over the period 2002 to 2023. Amongst the 11 SEA countries, the most AMR report has come from Vietnam, Malaysia, and Thailand, respectively. The AMR found in SEA aquaculture were classified into 17 drug classes. The most reported AMR are aminoglycosides, beta-lactams, (fluoro)quinolones, tetracycline, sulpha group and multi-drug. Beta-lactams, tetracycline, sulpha group are reported in each country with the reported frequencies higher than 40 %. Escherichia coli, Aeromonas and Vibrio are the most widely and frequently reported ARB in SEA aquaculture. Multiple antibiotic resistance (MAR) indexes for the sample containing multiple bacterial isolates were generally low, while the medium numbers of MAR indexes for the typical bacteria species were higher than 0.2 and showed higher MAR levels than the global mean. Most of the detected ARGs are related to beta-lactams, tetracycline, sulpha group, and aminoglycosides. Amongst the beta-lactam resistance genes, blaTEM, and blaSHV are the most frequently detected. Almost all the available information of antibiotics, ARB and ARGs in SEA aquaculture was consistent with the global scale analysis. In addition, factors that contribute to the development and spread of AMR in SEA aquaculture were discussed. Moreover, the national action plan to combat AMR in SEA countries and the available technologies that already applied in the SEA aquaculture are also included in this review. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of AMR in aquaculture of SEA countries.
    Matched MeSH terms: Drug Resistance, Bacterial
  5. Nassir KF, Ali BM, Ibrahim ZH, Qasim ZJ, Mahdi SG, Mustafa NM, et al.
    Med J Malaysia, 2024 Jan;79(1):74-79.
    PMID: 38287761
    INTRODUCTION: Salmonella typhi could infect the intestinal tract and the bloodstream or invade body organs and secrete endotoxins. It is endemic in developing countries. It is increasingly evolving antimicrobial resistance to several commonly used antimicrobial agents.

    MATERIALS AND METHODS: A cross-sectional study was done at Iraqi Communicable Disease Control Center, where all confirmed cases of Salmonella typhi are reported, for a period 2019-2021. All demographic, epidemiological and clinical characteristics of patients, comorbidities, type of samples, distribution of S. typhi by age and gender, time distribution in each year and profile of bacterial resistance and sensitivity to antibiotics were gathered and analysed.

    RESULTS: Most samples were taken from blood. The mean age of cases during 2019, 2020 and 2021 was 18.7 ± 6.5, 17.7 ± 14.1 and 17.3 ± 12.8. Males constituted 56.7%, 58.5% and 39.8%, respectively. Some cases had comorbidities. Most cases had headache and fever. Some of them had nausea, diarrhoea, vomiting and epigastric pain. The age and sex were significantly associated with years of reporting. The most months of case reporting were June-July (2019 and 2021), Jan. -Feb. (2020). There was an obvious increase in S. typhi resistance to ceftriaxone (92.2%, 86.1%, 88.8%) and ampicillin (77.1%, 76.9%, 81.27%). There was a gradual increase in sensitivity to tetracycline (83.1%, 88.1%, 94%), cotrimoxazole (86.7%, 86.1%, 92.2%), ciprofloxacin (78.3%, 90.1%, 87.8%) and cefixime (77.7%, 72.3%, 72.7%).

    CONCLUSIONS: There was a sharp rise in resistance rates of the S. typhi in Iraq (during 2019-2021) to ceftriaxone and ampicillin, while there were highest sensitivity rates to imipenem, aztreonam and chloramphenicol. The following recommendations were made: (1) Improvement of general hygiene and food safety measures. (2) Emphasis on vaccination and surveillance of Salmonella infection. (3) Rational use of appropriate antibiotics through implementation of treatment guidelines. (5) Educate communities and travelers about the risks of S. typhi and its preventive measures.

    Matched MeSH terms: Drug Resistance, Bacterial
  6. Omeershffudin UNM, Kumar S
    Arch Microbiol, 2023 Sep 09;205(10):330.
    PMID: 37688619 DOI: 10.1007/s00203-023-03663-0
    The continuous rise of antimicrobial resistance (AMR) is a serious concern as it endangers the effectiveness of healthcare interventions that rely on antibiotics in the long run. The increasing resistance of Neisseria gonorrhoeae, the bacteria responsible for causing gonorrhea, to commonly used antimicrobial drugs, is a major concern. This has now become a critical global health crisis. In the coming years, there is a risk of a hidden epidemic caused by the emergence of gonococcal AMR. This will worsen the global situation. Infections caused by N. gonorrhoeae were once considered easily treatable. However, over time, they have become increasingly resistant to commonly used therapeutic medications, such as penicillin, ciprofloxacin, and azithromycin. As a result, this pathogen is developing into a true "superbug," which means that ceftriaxone is now the only available option for initial empirical treatment. Effective management strategies are urgently needed to prevent severe consequences, such as infertility and pelvic inflammatory disease, which can result from delayed intervention. This review provides a thorough analysis of the escalating problem of N. gonorrhoeae, including its pathogenesis, current treatment options, the emergence of drug-resistant mechanisms, and the potential for vaccine development. We aim to provide valuable insights for healthcare practitioners, policymakers, and researchers in their efforts to combat N. gonorrhoeae antibiotic resistance by elucidating the multifaceted aspects of this global challenge.
    Matched MeSH terms: Drug Resistance, Bacterial
  7. Wernli D, Søgaard Jørgensen P, Parmley EJ, Majowicz SE, Lambraki I, Carson CA, et al.
    Lancet Planet Health, 2023 Jul;7(7):e630-e637.
    PMID: 37438004 DOI: 10.1016/S2542-5196(23)00128-6
    Social-ecological systems conceptualise how social human systems and ecological natural systems are intertwined. In this Personal View, we define the scope and applicability of social-ecological resilience to antimicrobial resistance. Resilience to antimicrobial resistance corresponds to the capacity to maintain the societal benefits of antimicrobial use and One Health systems' performance in the face of the evolutionary behaviour of microorganisms in response to antimicrobial use. Social-ecological resilience provides an appropriate framework to make sense of the disruptive impacts resulting from the emergence and spread of antimicrobial resistance; capture the diversity of strategies needed to tackle antimicrobial resistance and to live with it; understand the conditions that underpin the success or failure of interventions; and appreciate the need for adaptive and coevolutionary governance. Overall, resilience thinking is essential to improve understanding of how human societies dynamically can cope with, adapt, and transform to the growing global challenge of antimicrobial resistance.
    Matched MeSH terms: Drug Resistance, Bacterial*
  8. Jha N, Mudvari A, Hayat K, Shankar PR
    J Nepal Health Res Counc, 2023 Mar 09;20(3):689-696.
    PMID: 36974858 DOI: 10.33314/jnhrc.v20i3.3992
    BACKGROUND: Antimicrobial resistance is an important global problem resulting in an improper response of infections to antimicrobials and an increase in the duration and cost of treatment. Healthcare professionals play an important role in addressing Antimicrobial resistance and positive perception is important for involvement in antimicrobial stewardship policies. Hence the perception of key Healthcare professionals, including physicians, nurses, and hospital pharmacists, towards Antimicrobial resistance antimicrobial stewardship policies was studied.

    METHODS: A cross-sectional study was conducted in a tertiary care hospital at Lalitpur, from January to March 2021 using stratified random sampling. An online questionnaire was circulated to the selected Healthcare professionals. Median Antimicrobial resistance and antimicrobial stewardship policy scores were calculated and compared among different subgroups. Previous engagement with Antimicrobial resistance and antimicrobial stewardship policies programs was also noted. Descriptive statistics, Mann Whitney, and Kruskal Wallis tests were used for data analysis.

    RESULTS: The response rate was 89.3% (202/226). Antimicrobial resistance was regarded as a serious problem in the Nepali community by participants with work experience of 1-5 years, 87 (75.6%, p=0.029), and female participants, 62 (45.5%, p<0.001). Most physicians, females, and participants with working experience 1-5 years believed inappropriate use of antibiotics can harm patients and is professionally unethical. Physicians supported the availability of local antimicrobial guidelines and protocols. The median scores for Antimicrobial resistance (p<0.001) and Antimicrobial resistance eradication (p=0.048) differed according to age groups.

    CONCLUSIONS: Healthcare professionals believed Antimicrobial resistance was an important issue. Antibiotic guidelines developed should be strictly implemented. Healthcare professionals also believed inappropriate use of antibiotics can harm patients and is professionally unethical.

    Matched MeSH terms: Drug Resistance, Bacterial
  9. Ng HF, Ngeow YF
    Microb Drug Resist, 2023 Feb;29(2):41-46.
    PMID: 36802272 DOI: 10.1089/mdr.2022.0068
    Linezolid is one of the antibiotics used to treat the Mycobacteroides abscessus infection. However, linezolid-resistance mechanisms of this organism are not well understood. The objective of this study was to identify possible linezolid-resistance determinants in M. abscessus through characterization of step-wise mutants selected from a linezolid-susceptible strain, M61 (minimum inhibitory concentration [MIC]: 0.25 mg/L). Whole-genome sequencing and subsequent PCR verification of the resistant second-step mutant, A2a(1) (MIC: >256 mg/L), revealed three mutations in its genome, two of which were found in the 23S rDNA (g2244t and g2788t) and another one was found in a gene encoding the fatty-acid-CoA ligase FadD32 (c880t→H294Y). The 23S rRNA is the molecular target of linezolid and mutations in this gene are likely to contribute to resistance. Furthermore, PCR analysis revealed that the c880t mutation in the fadD32 gene first appeared in the first-step mutant, A2 (MIC: 1 mg/L). Complementation of the wild-type M61 with the pMV261 plasmid carrying the mutant fadD32 gene caused the previously sensitive M61 to develop a reduced susceptibility to linezolid (MIC: 1 mg/L). The findings of this study uncovered hitherto undescribed mechanisms of linezolid resistance in M. abscessus that may be useful for the development of novel anti-infective agents against this multidrug-resistant pathogen.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  10. Ahmed S, Ahmed MZ, Rafique S, Almasoudi SE, Shah M, Jalil NAC, et al.
    Biomed Res Int, 2023;2023:5250040.
    PMID: 36726844 DOI: 10.1155/2023/5250040
    Antimicrobial resistance (AMR) is a ubiquitous public health menace. AMR emergence causes complications in treating infections contributing to an upsurge in the mortality rate. The epidemic of AMR in sync with a high utilization rate of antimicrobial drugs signifies an alarming situation for the fleet recovery of both animals and humans. The emergence of resistant species calls for new treatments and therapeutics. Current records propose that health drug dependency, veterinary medicine, agricultural application, and vaccination reluctance are the primary etymology of AMR gene emergence and spread. Recently, several encouraging avenues have been presented to contest resistance, such as antivirulent therapy, passive immunization, antimicrobial peptides, vaccines, phage therapy, and botanical and liposomal nanoparticles. Most of these therapies are used as cutting-edge methodologies to downplay antibacterial drugs to subdue the resistance pressure, which is a featured motive of discussion in this review article. AMR can fade away through the potential use of current cutting-edge therapeutics, advancement in antimicrobial susceptibility testing, new diagnostic testing, prompt clinical response, and probing of new pharmacodynamic properties of antimicrobials. It also needs to promote future research on contemporary methods to maintain host homeostasis after infections caused by AMR. Referable to the microbial ability to break resistance, there is a great ultimatum for using not only appropriate and advanced antimicrobial drugs but also other neoteric diverse cutting-edge therapeutics.
    Matched MeSH terms: Drug Resistance, Bacterial
  11. Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, et al.
    PLoS One, 2023;18(5):e0285743.
    PMID: 37205716 DOI: 10.1371/journal.pone.0285743
    Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  12. Cousins M, Parmley EJ, Greer AL, Neiterman E, Lambraki IA, Graells T, et al.
    PLoS One, 2023;18(8):e0290464.
    PMID: 37616319 DOI: 10.1371/journal.pone.0290464
    BACKGROUND: Antimicrobial Resistance (AMR) is a global problem with large health and economic consequences. Current gaps in quantitative data are a major limitation for creating models intended to simulate the drivers of AMR. As an intermediate step, expert knowledge and opinion could be utilized to fill gaps in knowledge for areas of the system where quantitative data does not yet exist or are hard to quantify. Therefore, the objective of this study was to identify quantifiable data about the current state of the factors that drive AMR and the strengths and directions of relationships between the factors from statements made by a group of experts from the One Health system that drives AMR development and transmission in a European context.

    METHODS: This study builds upon previous work that developed a causal loop diagram of AMR using input from two workshops conducted in 2019 in Sweden with experts within the European food system context. A secondary analysis of the workshop transcripts was conducted to identify semi-quantitative data to parameterize drivers in a model of AMR.

    MAIN FINDINGS: Participants spoke about AMR by combining their personal experiences with professional expertise within their fields. The analysis of participants' statements provided semi-quantitative data that can help inform a future of AMR emergence and transmission based on a causal loop diagram of AMR in a Swedish One Health system context.

    CONCLUSION: Using transcripts of a workshop including participants with diverse expertise across the system that drives AMR, we gained invaluable insight into the past, current, and potential future states of the major drivers of AMR, particularly where quantitative data are lacking.

    Matched MeSH terms: Drug Resistance, Bacterial
  13. Graells T, Lambraki IA, Cousins M, Léger A, Henriksson PJG, Troell M, et al.
    Front Public Health, 2023;11:1230848.
    PMID: 37900049 DOI: 10.3389/fpubh.2023.1230848
    INTRODUCTION: Antimicrobial resistance (AMR) is a challenge to modern medicine. Interventions have been applied worldwide to tackle AMR, but these actions are often not reported to peers or published, leading to important knowledge gaps about what actions are being taken. Understanding factors that influence the implementation of AMR interventions and what factors are relevant in low-middle-income countries (LMICs) and high-income countries (HICs) were the key objectives of this exploratory study, with the aim to identifying which priorities these contexts need.

    METHODS: A questionnaire was used to explore context, characteristics, and success factors or obstacles to intervention success based on participant input. The context was analyzed using the AMR-Intervene framework, and success factors and obstacles to intervention success were identified using thematic analysis.

    RESULTS: Of the 77 interventions, 57 were implemented in HICs and 17 in LMICs. Interventions took place in the animal sector, followed by the human sector. Public organizations were mainly responsible for implementation and funding. Nine themes and 32 sub-themes emerged as important for intervention success. The themes most frequently reported were 'behavior', 'capacity and resources', 'planning', and 'information'. Five sub-themes were key in all contexts ('collaboration and coordination', 'implementation', 'assessment', 'governance', and 'awareness'), two were key in LMICs ('funding and finances' and 'surveillance, antimicrobial susceptibility testing and preventive screening'), and five were key in HICs ('mandatory', 'multiple profiles', 'personnel', 'management', and 'design').

    CONCLUSION: LMIC sub-themes showed that funding and surveillance were still key issues for interventions, while important HIC sub-themes were more specific and detailed, including mandatory enforcement, multiple profiles, and personnel needed for good management and good design. While behavior is often underrated when implementing AMR interventions, capacity and resources are usually considered, and LMICs can benefit from sub-themes captured in HICs if tailored to their contexts. The factors identified can improve the design, planning, implementation, and evaluation of interventions.

    Matched MeSH terms: Drug Resistance, Bacterial
  14. Khoo SC, Goh MS, Alias A, Luang-In V, Chin KW, Ling Michelle TH, et al.
    Environ Res, 2022 Dec;215(Pt 1):114218.
    PMID: 36049514 DOI: 10.1016/j.envres.2022.114218
    The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.
    Matched MeSH terms: Drug Resistance, Bacterial
  15. Klayut W, Rudeeaneksin J, Srisungngam S, Bunchoo S, Bhakdeenuan P, Phetsuksiri B, et al.
    Trop Biomed, 2022 Dec 01;39(4):483-488.
    PMID: 36602205 DOI: 10.47665/tb.39.4.001
    Tuberculosis (TB) continues to be a major public health problem in Thailand and many countries. Endemic TB and outbreaks of TB drug resistance in the borderlands are particularly important. The Thailand-Myanmar border has extensive cross-border travel that may accelerate TB's spread. This cross-sectional study aimed to determine the frequency and factors associated with TB, and rifampicinresistant TB (RR-TB) among presumptive tuberculosis patients in Mae Sot Hospital. Sputum was processed by microscopic examination and Xpert MTB/RIF assay. Laboratory results and socio-demographic characteristics were collected and analyzed. Univariate and multivariate analyses were performed to assess the association of the risk factors with TB and RR-TB. The significant variables at p-values < 0.05 in univariate analysis were selected for multivariate analysis. Of 365 presumptive patients enrolled, 244 (66.85%) were males and 199 (54.52%) were Burmese. Of these, 314 (86.03%) were registered as new cases and 183 (50.14%) worked as laborers. Sputum microscopy was positive in 132 (36.16%) cases. Based on Xpert MTB/RIF, the frequency of TB was 136 (37.26%) and RR-TB was 15 (11.03%). TB was more common in males than females. The majority of the cases belonged to the 26-50-year-old age group and migrant workers. In RR-TB detection, the rpoB mutations covered by probe E were the most frequently observed. Sequencing showed that the most highly mutated codon was codon 531 and Ser531Thr was the most common mutation. For risk factor analysis, working as laborers was significantly (p-value < 0.05) associated with TB (aOR 2.83; 95% CI 1.43-5.63) and previously treated cases were significantly associated with RR-TB (aOR 12.33; 95% CI 2.29-66.49). The high frequency of TB and RR-TB in migrants highlights the problem and factors associated with TB at the border and the need for efforts in TB control programs in this setting.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  16. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  17. Sulayyim HJA, Ismail R, Hamid AA, Ghafar NA
    Int J Environ Res Public Health, 2022 Sep 21;19(19).
    PMID: 36231256 DOI: 10.3390/ijerph191911931
    One of the public health issues faced worldwide is antibiotic resistance (AR). During the novel coronavirus (COVID-19) pandemic, AR has increased. Since some studies have stated AR has increased during the COVID-19 pandemic, and others have stated otherwise, this study aimed to explore this impact. Seven databases-PubMed, MEDLINE, EMBASE, Scopus, Cochrane, Web of Science, and CINAHL-were searched using related keywords to identify studies relevant to AR during COVID-19 published from December 2019 to May 2022, according to PRISMA guidelines. Twenty-three studies were included in this review, and the evidence showed that AR has increased during the COVID-19 pandemic. The most commonly reported resistant Gram-negative bacteria was Acinetobacterbaumannii, followed by Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. A. baumannii and K. pneumonia were highly resistant to tested antibiotics compared with E. coli and P. aeruginosa. Moreover, K. pneumonia showed high resistance to colistin. Commonly reported Gram-positive bacteria were Staphylococcus aureus and Enterococcus faecium. The resistance of E. faecium to ampicillin, erythromycin, and Ciprofloxacin was high. Self-antibiotic medication, empirical antibiotic administration, and antibiotics prescribed by general practitioners were the risk factors of high levels of AR during COVID-19. Antibiotics' prescription should be strictly implemented, relying on the Antimicrobial Stewardship Program (ASP) and guidelines from the World Health Organization (WHO) or Ministry of Health (MOH).
    Matched MeSH terms: Drug Resistance, Bacterial
  18. Hashmi FK, Atif N, Malik UR, Saleem F, Riboua Z, Hassali MA, et al.
    Disaster Med Public Health Prep, 2022 Aug;16(4):1285-1286.
    PMID: 33691830 DOI: 10.1017/dmp.2020.492
    Matched MeSH terms: Drug Resistance, Bacterial
  19. Tobuse AJ, Ang CW, Yeong KY
    Life Sci, 2022 Aug 01;302:120660.
    PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660
    With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
    Matched MeSH terms: Drug Resistance, Bacterial
  20. Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, et al.
    Eur J Pharm Sci, 2022 Mar 01;170:106103.
    PMID: 34936936 DOI: 10.1016/j.ejps.2021.106103
    Antibiotic resistance is a major health concern globally and has been estimated to cause 10 million deaths worldwide by year 2050 if the current trend of inappropriate and excessive use of antibiotics continues. Although, the discovery of antibiotics has saved countless of lives for the past 80 years, increasing levels of bacterial resistance to antibiotics would jeopardize the progress in clinical and agricultural sectors and may cause life-threatening situations even for previously treatable bacterial infections. Antibiotic resistance would increase the levels of poverty of low-middle income countries mostly due to extended hospital stays, higher cost of treatment and untimely deaths that directly affect the total productivity rate. Recent incidences of antibiotic resistance have been gradually increasing globally and this may potentiate horizontal transmission of the resistant gene and have been linked with cross-resistance to other antibiotic families as well. This review summarizes the global burden of antibiotic resistance from the economic viewpoint, highlights the recent incidences of antibiotic resistance mainly related to Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella spp. and Staphylococcus aureus, describes the common mechanistic actions of antibiotic resistance and potential strategies to overcome antibiotic resistance.
    Matched MeSH terms: Drug Resistance, Bacterial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links