There is a great diversity of protein samples types and origins, therefore the optimal procedure for each sample type must be determined empirically. In order to obtain a reproducible and complete sample presentation which view as many proteins as possible on the desired 2DE gel, it is critical to perform additional sample preparation steps to improve the quality of the final results, yet without selectively losing the proteins. To address this, we developed a general method that is suitable for diverse sample types based on phenolchloroform extraction method (represented by TRI reagent). This method was found to yield good results when used to analyze human breast cancer cell line (MCF-7), Vibrio cholerae, Cryptocaryon irritans cyst and liver abscess fat tissue. These types represent cell line, bacteria, parasite cyst and pus respectively. For each type of samples, several attempts were made to methodically compare protein isolation methods using TRI-reagent Kit, EasyBlue Kit, PRO-PREP™ Protein Extraction Solution and lysis buffer. The most useful protocol allows the extraction and separation of a wide diversity of protein samples that is reproducible among repeated experiments. Our results demonstrated that the modified TRI-reagent Kit had the highest protein yield as well as the greatest number of total proteins spots count for all type of samples. Distinctive differences in spot patterns were also observed in the 2DE gel of different extraction methods used for each type of sample.
Two-dimensional gel electrophoresis (2-DE) is a technique that has been widely applied in a variety of proteomics studies. It is capable of resolving complex protein mixtures into individual protein spots based on their isoelectric point and molecular weight, enabling large-scale analysis of protein expression patterns for deciphering their changes in different biological conditions. 2-DE is a powerful tool that empowers researchers to perform differential qualitative and quantitative proteome analysis and is particularly advantageous for characterizing protein isoforms and post-translationally modified proteins. Despite its popularity as the workhorse for proteomics in the past few decades, it has been gradually displaced by the more sophisticated and high-performance mass spectrometry-based methods. However, there are several variations of the 2-DE technique that have emerged as promising approaches that shine new light on specific niches that 2-DE could still contribute. In this review, we first provide an overview of the applications of 2-DE, its merits and pitfalls in the current proteomic research arena, followed by a discussion on several alternative approaches for potential future applications.
Limitation on two dimensional (2D) gel electrophoresis technique causes some proteins to be under presented, especially the extreme acidic, basic, or membrane proteins. To overcome the limitation of 2D electrophoresis, an analysis method was developed for identification of differentially expressed proteins in normal and cancerous colonic tissues using self-pack hydroxyapatite (HA) column. Normal and cancerous colon tissues were homogenized and proteins were extracted using sodium phosphate buffer at pH 6.8. Protein concentration was determined and the proteins were loaded unto the HA column. HA column reduced the complexity of proteins mixture by fractionating the proteins according to their ionic strength. Further protein separation was accomplished by a simple and cost effective sodium dodecyl sulfate-polyacrylamide gel electrophoresis method. The protein bands were subjected to in-gel digestion and protein analysis was performed using electrospray ionization (ESI) ion trap mass spectrometer. There were 17 upregulated proteins and seven downregulated proteins detected with significant differential expression. Some of these proteins were low abundant proteins or proteins with extreme pH that were usually under presented in 2D gel analysis. We have identified brain mitochondrial carrier protein 1, T-cell surface glycoprotein CD1a, SOSS complex subunit B2, and Protein Jade 1 which were previously not detected in 2D gel analysis method.
Proteomics has currently been a developing field in periodontal diseases to obtain protein information of certain samples. Periodontal disease is an inflammatory disorder that attacks the teeth, connective tissues, and alveolar bone within the oral cavity. Proteomics information can provide proteins that are differentially expressed in diseased or healthy samples. This review provides insight into approaches researching single species, multi species, bacteria, non-human, and human models of periodontal disease for proteomics information. The approaches that have been taken include gel electrophoresis and qualitative and quantitative mass spectrometry. This review is carried out by extracting information about in vitro and in vivo studies of proteomics in models of periodontal diseases that have been carried out in the past two decades. The research has concentrated on a relatively small but well-known group of microorganisms. A wide range of models has been reviewed and conclusions across the breadth of these studies are presented in this review.
The use of lectin affinity chromatography prior to 2-DE separation forms an alternative method to unmask the expression of targeted glycoproteins of lower abundance in serum samples. Reduced expression of alpha-2 macroglobulin (AMG) and complement factor B (CFB) was detected in sera of patients with nasopharyngeal carcinoma (NPC) when pooled serum samples of the patients and those of healthy individuals were subjected to affinity isolation using immobilized champedak mannose-binding lectin and analyzed by 2-DE and densitometry. The AMG and CFB spots were not detected in the 2-DE protein profiles when the same pooled serum samples were subjected to albumin and IgG depletion and neither were they detected when the depleted samples were analyzed by western blotting and lectin detection. Together with other acute-phase response proteins that were previously reported to be altered in expression in NPC patients, AMG and CFB may serve as useful complementary biomarkers for NPC.
The typical concentration of protein loaded varies from 0.13 to 1.40 μg/μL for a classical silver staining method in 2DE gel. Here, we present a simple modified classical silver staining method by modifying the silver impregnation and development reaction steps. This modified method detects the protein spots at extremely low loaded concentrations, ranging from 0.0048 to 0.0480 μg/μL. We recommend this modified silver staining as an excellent method for the limited biological samples used for silver-stained 2DE analysis. Altogether, the protocol takes close to two days from first dimension separation to second dimension separation, followed by silver staining, scanning, and analysis.
Sera of IgA nephropathy (IgAN) patients and normal subjects were analysed by two-dimensional (2-D) gel electrophoresis. Densitometric analysis of the 2-D gels of IgAN patients and normal subjects revealed that their protein maps were comparable. There was no shift of pI values in the major alpha-heavy chain spots. However, the volume of the alpha-heavy chain bands were differently distributed. Distribution was significantly lower at the anionic region in IgAN patients (mean anionic:cationic ratio of 1.184 +/- 0.311) as compared to normal healthy controls (mean anionic:cationic ratio of 2.139 +/- 0.538). Our data are in support of the previously reported findings that IgA1 of IgAN patients were lacking in sialic acid residues.
Ganoderma species are a group of fungi that have the ability to degrade lignin polymers and cause severe diseases such as stem and root rot and can infect economically important plants and perennial crops such as oil palm, especially in tropical countries such as Malaysia. Unfortunately, very little is known about the complex interplay between oil palm and Ganoderma in the pathogenesis of the diseases. Proteomic technologies are simple yet powerful tools in comparing protein profile and have been widely used to study plant-fungus interaction. A critical step to perform a good proteome research is to establish a method that gives the best quality and a wide coverage of total proteins. Despite the availability of various protein extraction protocols from pathogenic fungi in the literature, no single extraction method was found suitable for all types of pathogenic fungi. To develop an optimized protein extraction protocol for 2-DE gel analysis of Ganoderma spp., three previously reported protein extraction protocols were compared: trichloroacetic acid, sucrose and phenol/ammonium acetate in methanol. The third method was found to give the most reproducible gels and highest protein concentration. Using the later method, a total of 10 protein spots (5 from each species) were successfully identified. Hence, the results from this study propose phenol/ammonium acetate in methanol as the most effective protein extraction method for 2-DE proteomic studies of Ganoderma spp.
Oil palm (Elaeis guineensis) is an important economic crop cultivated for its nutritional palm oil. A significant amount of effort has been undertaken to understand oil palm growth and physiology at the molecular level, particularly in genomics and transcriptomics. Recently, proteomics studies have begun to garner interest. However, this effort is impeded by technical challenges. Plant sample preparation for proteomics analysis is plagued with technical challenges due to the presence of polysaccharides, secondary metabolites and other interfering compounds. Although protein extraction methods for plant tissues exist, none work universally on all sample types. Therefore, this study aims to compare and optimize different protein extraction protocols for use with two-dimensional gel electrophoresis of young and mature leaves from the oil palm. Four protein extraction methods were evaluated: phenol-guanidine isothiocyanate, trichloroacetic acid-acetone precipitation, sucrose and trichloroacetic acid-acetone-phenol. Of these four protocols, the trichloroacetic acid-acetone-phenol method was found to give the highest resolution and most reproducible gel. The results from this study can be used in sample preparations of oil palm tissue for proteomics work.
Researchers frequently use two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) prior to mass spectrometric analysis in a proteomics approach. The i2D-PAGE method, which 'inverts' the dimension of protein separation of the conventional 2D-PAGE, is presented in this publication. Protein lysate of Channa striata, a freshwater snakehead fish, was separated based on its molecular weight in the first dimension and its isoelectric point in the second dimension. The first-dimension separation was conducted on a gel-free separation device, and the protein mixture was fractionated into 12 fractions in chronological order of increasing molecular weight. The second-dimension separation featured isoelectric focusing, which further separated the proteins within the same fraction according to their respective isoelectric point. Advantages of i2D-PAGE include better visualisation of the isolated protein, easy identification on protein isoforms, shorter running time, customisability and reproducibility. Erythropoietin standard was applied to i2D-PAGE to show its effectiveness for separating protein isoforms. Various staining methods such as Coomassie blue staining and silver staining are also applicable to i2D-PAGE. Overall, the i2D-PAGE separation method effectively separates protein lysate and is suitable for application in proteomics research.
Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen.
Palm oil is an edible vegetable oil derived from lipid-rich fleshy mesocarp tissue of oil palm (Elaeis guineensis Jacq.) fruit and is of global economic and nutritional relevance. While the understanding of oil biosynthesis in plants is improving, the fundamentals of oil biosynthesis in oil palm still require further investigations. To gain insight into the systemic mechanisms that govern oil synthesis during oil palm fruit ripening, the proteomics approach combining gel-based electrophoresis and mass spectrometry was used to profile protein changes and classify the patterns of protein accumulation during these complex physiological processes. Protein profiles from different stages of fruit ripening at 10, 12, 14, 15, 16, 18 and 20 weeks after anthesis (WAA) were analysed by two-dimensional gel electrophoresis (2DE). The proteome data were then visualised using a multivariate statistical analysis of principal component analysis (PCA) to get an overview of the proteome changes during the development of oil palm mesocarp. A total of 68 differentially expressed protein spots were successfully identified by matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF/TOF) and functionally classified using ontology analysis. Proteins related to lipid production, energy, secondary metabolites and amino acid metabolism are the most significantly changed proteins during fruit development representing potential candidates for oil yield improvement endeavors. Data are available via ProteomeXchange with identifier PXD009579. This study provides important proteome information for protein regulation during oil palm fruit ripening and oil synthesis.
The primary components of human hair shaft-keratin and keratin-associated proteins (KAPs), together with their cross-linked networks-are the underlying reason for its rigid structure. It is therefore requisite to overcome the obstacle of hair insolubility and establish a reliable protocol for the proteome analysis of this accessible specimen. The present study employed an alkaline-based method for the efficient isolation of hair proteins and subsequently examined them using gel-based proteomics. The introduction of two proteomic protocols, namely the conventional and modified protocol, have resulted in the detection of more than 400 protein spots on the two-dimensional gel electrophoresis (2DE). When compared, the modified protocol is deemed to improve overall reproducibility, whilst offering a quick overview of the total protein distribution of hair. The development of this high-performance protocol is hoped to provide a new approach for hair analysis, which could possibly lead to the discovery of biomarkers for hair in health and diseases in the future.
Proteomic analysis of plants relies on high yields of pure protein. In plants, protein extraction and purification present a great challenge due to accumulation of a large amount of interfering substances, including polysaccharides, polyphenols, and secondary metabolites. Therefore, it is necessary to modify the extraction protocols. A study was conducted to compare four protein extraction and precipitation methods for proteomic analysis. The results showed significant differences in protein content among the four methods. The chloroform-trichloroacetic acid-acetone method using 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer provided the best results in terms of protein content, pellets, spot resolution, and intensity of unique spots detected. An overall of 83 qualitative or quantitative significant differential spots were found among the four methods. Based on the 2-DE gel map, the method is expected to benefit the development of high-level proteomic and biochemical studies of Andrographis paniculata, which may also be applied to other recalcitrant medicinal plant tissues.
Mouthbrooding is an elaborate form of parental care displayed by many teleost species. While the direct benefits of mouthbrooding such as protection and transportation of offsprings are known, it is unclear if mouthbrooding offers additional benefits to embryos during incubation. In addition, mouthbrooding could incur negative costs on parental fish, due to limited feeding opportunities. Parental tilapia fish (Oreochromis spp.) display an elaborated form of parental care by incubating newly hatched embryos in oral buccal cavity until the complete adsorption of yolk sac. In order to understand the functional aspects of mouthbrooding, we undertake a proteomics approach to compare oral mucus sampled from mouthbrooders and non-mouthbrooders, respectively. Majority of the identified proteins have also been previously identified in other biological fluids or mucus-rich organs in different organisms. We also showed the upregulation of 22 proteins and down regulation of 3 proteins in mucus collected from mouthbrooders. Anterior gradient protein, hemoglobin beta-A chain and alpha-2 globin levels were lower in mouthbrooder samples. Mouthbrooder oral mucus collectively showed increase levels of proteins related to cytoskeletal properties, glycolytic pathway and mediation of oxidative stress. Overall the findings suggest cellular stress response, probably to support production of mucus during mouthbrooding phase.
The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.
To gain insights on protein changes in fruit setting and growth in oil palm, a comparative proteomic approach was undertaken to study proteome changes during its early development. The variations in the proteome at five early developmental stages were investigated via a gel-based proteomic technique. A total of 129 variant proteins were determined using mass spectrometric analysis, resulting in 80 identifications. The majority of the identified protein species were classified as energy and metabolism, stress response/defence and cell structure during early oil palm development representing potential candidates for the control of final fruit size and composition. Seven prominent protein species were then characterised using real-time polymerase chain reaction to validate the mRNA expression against the protein abundant profiles. Transcript and protein profiles were parallel across the developmental stages, but divergent expression was observed in one protein spot, indicative of possible post-transcriptional events. Our results revealed protein changes in early oil palm fruit development provide valuable information in the understanding of fruit growth and metabolism during early stages that may contribute towards improving agronomic traits. BIOLOGICAL SIGNIFICANCE: Two-dimensional gel electrophoresis coupled with mass spectrometry approach was used in this study to identify differentially expressed proteins during early oil palm fruit development. A total of 80 protein spots with significant change in abundance were successfully identified and selected genes were analysed using real time PCR to validate their expression. The dynamic changes in oil palm fruit proteome during early development were mostly active in primary and energy metabolism, stress responses, cell structure and protein metabolism. This study reveals the physiological processes during early oil palm fruit development and provides a reference proteome for further improvements in fruit quality traits.
Royal jelly is widely consumed in the community and has perceived benefits ranging from promoting growth in children and improvement of general health status to enhancement of longevity for the elderly. However, royal jelly consumption has been linked to contact dermatitis, acute asthma, anaphylaxis and death. High prevalence of positive skin tests to royal jelly have been reported among atopic populations in countries with a high rate of royal jelly consumption. The present study is aimed to identify the major allergens of royal jelly. Royal jelly extract was separated by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional electrophoresis (2-D). Immunoblotting of the SDS-PAGE and 2-D profiles were performed to identify the allergenic spots. Spots were then excised from the 2-D gel, digested with trypsin and analyzed by mass spectrometry. The SDS-PAGE of royal jelly extract revealed 18 bands between 10 to 167 kD. Western blot of the fractionated proteins detected 15 IgE-binding bands between 14 to 127 kD with seven major allergens of 32, 40, 42, 49, 55, 60 and 67 kD using serum from 53 subjects with royal jelly allergy. The 2-D gel fractionated the royal jelly proteins to more than 50 different protein spots. Out of these, 30 spots demonstrated specific IgE affinity to the sera tested. Eight spots of the major royal jelly allergens were selected for mass-spectrometry analysis. Digested tryptic peptides of the spots were compared to the amino acid sequence search in protein databases which identified the fragments of royal jelly homologus to major royal jelly protein 1 (MRJ1) and major royal jelly protein 2 (MRJ2). In conclusion, the major allergens of royal jelly are MRJ1 and MRJ2 in our patients' population.
Crab meat is widely consumed in several countries around the world. However, when consumed, crab meat are frequent cause of allergic reactions throughout the world. Scylla serrata is among the most common mud crab in Malaysia. In a previous study two major allergens of mud crab at 36 and 41 kDa was identified. Thus, the aim of this study is to further identify these major allergens by a proteomic approach. Protein extract was prepared and resolved by 2-dimensional electrophoresis (2-DE). Immunoblotting was then performed using reactive sera from patients with crab allergy. Major allergenic spots were then excised from the 2-DE gel and analysed by mass spectrometry. The 2-DE profile of the extract revealed approximately >100 protein spots between pH of 4.00 to 8.00. Mass spectrometry analysis has identified the 36 and 41 kDa proteins as tropomyosin and arginine kinase, respectively. Our findings indicated that tropomyosin and arginine kinase play a major role in allergic reaction to mud crab meat among local patients with crab meat allergy, and should be included in diagnostics and therapeutic strategies of this allergy.
Oil palm is one of the most productive oil bearing crops grown in Southeast Asia. Due to the dwindling availability of agricultural land and increasing demand for high yielding oil palm seedlings, clonal propagation is vital to the oil palm industry. Most commonly, leaf explants are used for in vitro micropropagation of oil palm and to optimize this process it is important to unravel the physiological and molecular mechanisms underlying somatic embryo production from leaves. In this study, a proteomic approach was used to determine protein abundance of mature oil palm leaves. To do this, leaf proteins were extracted using TCA/acetone precipitation protocol and separated by 2DE. A total of 191 protein spots were observed on the 2D gels and 67 of the most abundant protein spots that were consistently observed were selected for further analysis with 35 successfully identified using MALDI TOF/TOF MS. The majority of proteins were classified as being involved in photosynthesis, metabolism, cellular biogenesis, stress response, and transport. This study provides the first proteomic assessment of oil palm leaves in this important oil crop and demonstrates the successful identification of selected proteins spots using the Malaysian Palm Oil Board (MPOB) Elaeis guineensis EST and NCBI-protein databases. The MS data have been deposited in the ProteomeXchange Consortium database with the data set identifier PXD001307.