Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. Ampon K
    J Chem Technol Biotechnol, 1992;55(2):185-90.
    PMID: 1384564
    Trypsin has been immobilized by adsorption onto Amberlite XAD-7 beads. The Michaelis constant (Km) of the enzyme was increased about sevenfold following the immobilization. Its rate of penetration into the porous beads was determined by staining the beads, which had been split, with naphthol blue black. The extent of diffusional rate limitation of immobilized trypsin was related to the penetration depth of the enzyme into the beads. This can be controlled by manipulating the conditions during the preparation of the immobilized enzyme.
    Matched MeSH terms: Enzymes, Immobilized*
  2. Lee PM, Lee KH, Siaw YS
    J Chem Technol Biotechnol, 1993;58(1):65-70.
    PMID: 7763937
    Aminoacylase I (EC. 3.5.1.14) was immobilized by covalent crosslinking to alginate molecules with 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide HCl followed by calcium alginate bead formation for the production of L-phenylalanine from the racemic mixtures of N-acetyl-DL-phenylalanine. Different concentrations of the coupling reagent were tested and the coupling process was optimized. The immobilized and the partially purified aminoacylase were characterized in terms of the activity, operational stability, thermal stability, pH and temperature optima and kinetic constants, Km and Vmax. The activity of the enzyme covalently immobilized in calcium alginate beads was enhanced by about 75% compared to that of free enzyme. The beads showed stable activity under operational conditions, they lost about 40% of their activity after four reaction cycles. The immobilized aminoacylase was more stable over a broader pH range. Thus this simple method provides irreversible immobilization of aminoacylase to give a biocatalyst with good operational stability and enhanced activity.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  3. Lee KH, Lee PM, Siaw YS
    J Chem Technol Biotechnol, 1993;57(1):27-32.
    PMID: 7763683
    Aminoacylase I (EC 3.5.1.14) encapsulated in calcium alginate beads stabilized with poly-L-lysine was used for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The immobilized aminoacylase was studied with respect to operational stability, thermal stability, effects of pH and temperature and kinetic constants. The leakage of enzyme from the stabilized beads was eliminated. The immobilized enzyme retained high biological activity. The Km and Vmax values for the stabilized beads were 11.11 mmol dm-3 and 0.076 mumol min-1 respectively. The optimum pH and temperature for the hydrolysis were 6.5 and 55 degrees C respectively. Scanning electron micrographs revealed crosslinked structures on the surface of the beads. The operational performances of the beads in a batch reaction and a packed-bed bioreactor for continuous reaction were investigated. With batch reaction, only about 5% of enzyme activity was lost within ten reaction cycles and there was no significant loss of activity over 600 h of continuous operation after equilibrium was reached, and a conversion yield of about 80% was obtained.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  4. Lee PM, Lee KH, Siaw YS
    PMID: 8260581
    Aminoacylase I (E.C.3.5.1.14) was immobilized by entrapment in calcium alginate beads coated with polyethyleneimine for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The operational stability in terms of batch operation and continuous reaction in packed-bed bioreactor were studied. Kinetic constants, Km and Vmax values of free and immobilized enzymes were studied. Polyethyleneimine treatment was found to enhance the operational stability of the enzyme though its activity was substantially reduced. When polyethyleneimine-coated calcium alginate beads were packed into packed bed bioreactor, it was stable for at least 25 days under continuous operation without appreciable loss of activity.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  5. Esa NM, Yunus WM, Ahmad MB, Basri M, Razak CN, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:489-92.
    PMID: 9928130
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  6. Basri M, Samsudin S, Ahmad MB, Razak CN, Salleh AB
    Appl Biochem Biotechnol, 1999 Sep;81(3):205-17.
    PMID: 15304777
    Lipase from Candida rugosa was immobilized by entrapment on poly(N-vinyl- 2-pyrrolidone-co-2-hydroxyethyl methacrylate) (poly[VP-co-HEMA]) hydrogel, and divinylbenzene was the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases was also determined. Increasing the percentage of composition of VP from 0 to 90, which corresponds to the increase in the hydrophilicity of the hydrogels, increased the activity of the immobilized enzyme. Lipase immobilized on VP(%):HEMA(%) 90:10 exhibited the highest activity. Lipase immobilized on VP(%):HEMA(%) 50:50 showed the highest thermal, solvent, storage, and operational stability compared to lipase immobilized on other compositions of hydrogels as well as the native lipase.
    Matched MeSH terms: Enzymes, Immobilized
  7. Min CS, Bhatia S, Kamaruddin AH
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):417-21.
    PMID: 10595442
    Continuous hydrolysis of palm oil triglyceride in organic solvent using immobilized Candida rugosa on the Amberlite MB-1 as a source of immobilized lipase was studied in packed bed reactor. The enzymatic kinetics of hydrolysis reaction was studied by changing the substrate concentration, reaction temperature and residence time(tau) in the reactor. At 55 degrees C, the optimum water concentration was found to be 15 % weight per volume of solution (%w/v). The Michaelis-Menten kinetic model was used to obtain the reaction parameters, Km(app) and V max(app). The activation energies were found to be quite low indicating that the lipase-catalyzed process is controlled by diffusion of substrates. The Michaelis-Menten kinetic model was found to be suitable at low water concentration 10-15 %w/v of solution. At higher water concentration, substrate inhibition model was used for data analysis. Reactor operation was found to play an important role in the palm oil hydrolysis kinetic.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  8. Kee CY, Hassan M, Ramachandran KB
    PMID: 10595438
    The objective of this research was to study the kinetics of synthesis of a commercially important ester - Isopropyl Palmitate (IPP) using immobilized lipase (Lipozyme IM). It was studied in a packed bed differential reactor. In order to establish the kinetics of the reaction, parameters such as linear velocity of the fluid through the reactor, particle size, substrate concentration, substrate molar ratio, temperature and water activity were studied. Operational and storage stability of the enzyme were also assessed. The reaction followed Michaelis-Menton kinetics as observed from the relationship of initial rate of the reaction as a function of substrate concentration. It was found that the optimum substrate concentration was 0.15M palmitic acid and isopropyl alcohol in 1:1 stoichiometric ratio. Inhibition by excess of isopropyl alcohol has been identified. The optimum temperature for the esterification reaction was found to be around 50 degrees C. The activation energy of this process was determined to be 43.67 kJ/mol. The optimum water content was 0.50%. The reaction rates were measured in the absence of any significant external diffusional limitations. Since internal diffusional limitations could not be eliminated, the kinetics observed is only apparent.
    Matched MeSH terms: Enzymes, Immobilized/economics; Enzymes, Immobilized/metabolism*
  9. Bhatia S, Naidu AD, Kamaruddin AH
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):435-40.
    PMID: 10595445
    Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  10. Soo EL, Salleh AB, Basri M, Zaliha Raja Abdul Rahman RN, Kamaruddin K
    J Biosci Bioeng, 2003;95(4):361-7.
    PMID: 16233420
    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications.
    Matched MeSH terms: Enzymes, Immobilized
  11. Azila AA, Barbari T, Searson P
    Med J Malaysia, 2004 May;59 Suppl B:51-2.
    PMID: 15468814
    Considerable effort has been focused on the method of immobilizing glucose oxidase (GOD) for amperometric glucose biosensors since the technique employed may influence the available activity of the enzyme and thus affect the performance of the sensor. Narrow measuring range and low current response are still considered problems in this area. In this work, poly(vinyl alcohol)(PVA) was investigated as a potential matrix for GOD immobilization. GOD was entrapped in cross-linked PVA. The use of a PVA-GOD membrane as the enzymatic component of a glucose biosensor was found to be promising in both the magnitude of its signal and its relative stability over time. The optimum PVA-GOD membrane (cross-linking density of 0.06) was obtained through careful selection of the cross-linking density of the PVA matrix.
    Matched MeSH terms: Enzymes, Immobilized*
  12. Rahman MB, Basri M, Hussein MZ, Rahman RN, Zainol DH, Salleh AB
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):313-20.
    PMID: 15304759
    Synthesis of layered double hydroxides (LDHs) of Zn/Al-NO3- hydrotalcite (HIZAN) and Zn/Al-diocytyl sodium sulfosuccinate (DSS) nanocomposite (NAZAD) with a molar ratio of Zn/Al of 4:1 were carried out by coprecipitation through continuous agitation. Their structures were determined using X-ray diffractometer spectra, which showed that basal spacing for LDH synthesized by both methods was about 8.89 A. An expansion of layered structure of about 27.9 A was observed to accommodate the surfactant anion between the interlayer. This phenomenon showed that the intercalation process took place between the LDH interlayer. Lipase from Candida rugosa was immobilized onto these materials by physical adsorption method. It was found that the protein loading onto NAZAD is higher than HIZAN. The activity of immobilized lipase was investigated through esterification of oleic acid and 1-butanol in hexane. The effects of pore size, surface area, reaction temperature, thermostability of the immobilized lipases, storage stability in organic solvent, and leaching studies were investigated. Stability was found to be the highest in the nanocomposite NAZAD.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
  13. Wong FC, Ahmad M, Heng LY, Peng LB
    Talanta, 2006 Jun 15;69(4):888-93.
    PMID: 18970653 DOI: 10.1016/j.talanta.2005.11.034
    An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R(2)=0.98, n=3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90mM AChCl (R(2)=0.984, n=6). The response time of the biosensor is 12min. Based on the optimum incubation time of 15min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7mg/L of dichlorvos (17-85% inhibition, R(2)=0.991, n=9). The detection limit for dichlorvos was 0.5mg/L. The results of the analysis of 1.7-6.0mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.
    Matched MeSH terms: Enzymes, Immobilized
  14. Serri NA, Kamaruddin AH, Long WS
    Bioprocess Biosyst Eng, 2006 Oct;29(4):253-60.
    PMID: 16868763
    Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  15. Lo SK, Cheong LZ, Arifin N, Tan CP, Long K, Yusoff MS, et al.
    J Agric Food Chem, 2007 Jul 11;55(14):5595-603.
    PMID: 17571899
    Diacylglycerol (DAG) and triacylglycerol (TAG) as responses on optimization of DAG production using a dual response approach of response surface methodology were investigated. This approach takes the molecular equilibrium of DAG into account and allows for the optimization of reaction conditions to achieve maximum DAG and minimum TAG yields. The esterification reaction was optimized with four factors using a central composite rotatable design. The following optimized conditions yielded 48 wt % DAG and 14 wt % TAG: reaction temperature of 66.29 degrees C, enzyme dosage of 4 wt %, fatty acid/glycerol molar ratio of 2.14, and reaction time of 4.14 h. Similar results were achieved when the process was scaled up to a 10 kg production in a pilot packed-bed enzyme reactor. Lipozyme RM IM did not show any significant activity losses or changes in fatty acid selectivity on DAG synthesis during the 10 pilot productions. However, lipozyme RM IM displayed higher selectivity toward the production of oleic acid-enriched DAG. The purity of DAG oil after purification was 92 wt %.
    Matched MeSH terms: Enzymes, Immobilized
  16. Ong AL, Kamaruddin AH, Bhatia S, Aboul-Enein HY
    J Sep Sci, 2008 Jul;31(13):2476-85.
    PMID: 18646277 DOI: 10.1002/jssc.200800086
    An enzymatic membrane reactor (EMR) for enantioseparation of (R,S)-ketoprofen via Candida antarctica lipase B (CALB) as biocatalyst was investigated. A comparative study of free and immobilized CALB was further conducted. The catalytic behaviour of CALB in an EMR was affected by the process parameters of enzyme load, substrate concentration, substrate molar ratio, lipase solution pH, reaction temperature, and substrate flow rate. Immobilization of CALB in the EMR was able to reduce the amount of enzyme required for the enantioseparation of (R,S)-ketoprofen. Immobilized CALB in the EMR assured higher reaction capacity, better thermal stability, and reusability. It was also found to be more cost effective and practical than free CALB in a batch reactor.
    Matched MeSH terms: Enzymes, Immobilized
  17. Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2008;28(4):253-64.
    PMID: 19051104 DOI: 10.1080/07388550802428392
    Increase in volume of biodiesel production in the world scenario proves that biodiesel is accepted as an alternative to conventional fuel. Production of biodiesel using alkaline catalyst has been commercially implemented due to its high conversion and low production time. For the product and process development of biodiesel, enzymatic transesterification has been suggested to produce a high purity product with an economic, environment friendly process at mild reaction conditions. The enzyme cost being the main hurdle can be overcome by immobilization. Immobilized enzyme, which has been successfully used in various fields over the soluble counterpart, could be employed in biodiesel production with the aim of reducing the production cost by reusing the enzyme. This review attempts to provide an updated compilation of the studies reported on biodiesel production by using lipase immobilized through various techniques and the parameters, which affect their functionality.
    Matched MeSH terms: Enzymes, Immobilized*
  18. Halim SF, Kamaruddin AH, Fernando WJ
    Bioresour Technol, 2009 Jan;100(2):710-6.
    PMID: 18819793 DOI: 10.1016/j.biortech.2008.07.031
    This study aimed to develop an optimal continuous procedure of lipase-catalyzes transesterification of waste cooking palm oil in a packed bed reactor to investigate the possibility of large scale production further. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the two important reaction variables packed bed height (cm) and substrate flow rate(ml/min) for the transesterification of waste cooking palm oil in a continuous packed bed reactor. The optimum condition for the transesterification of waste cooking palm oil was as follows: 10.53 cm packed bed height and 0.57 ml/min substrate flow rate. The optimum predicted fatty acid methyl ester (FAME) yield was 80.3% and the actual value was 79%. The above results shows that the RSM study based on CCRD is adaptable for FAME yield studied for the current transesterification system. The effect of mass transfer in the packed bed reactor has also been studied. Models for FAME yield have been developed for cases of reaction control and mass transfer control. The results showed very good agreement compatibility between mass transfer model and the experimental results obtained from immobilized lipase packed bed reactor operation, showing that in this case the FAME yield was mass transfer controlled.
    Matched MeSH terms: Enzymes, Immobilized
  19. Azmi NE, Ahmad M, Abdullah J, Sidek H, Heng LY, Karuppiah N
    Anal Biochem, 2009 May 1;388(1):28-32.
    PMID: 19454217 DOI: 10.1016/j.ab.2009.02.005
    An optical biosensor based on glutamate dehydrogenase (GLDH) immobilized in a chitosan film for the determination of ammonium in water samples is described. The biosensor film was deposited on a glass slide via a spin-coating method. The ammonium was measured based on beta-nicotinamide adenine dinucleotide (NADH) oxidation in the presence of alpha-ketoglutaric acid at a wavelength of 340 nm. The biosensor showed optimum activity at pH 8. The optimum chitosan concentrations and enzyme loading were found to be at 2% (w/v) and 0.08 mg, respectively. Optimum concentrations of NADH and alpha-ketoglutaric acid both were obtained at 0.15 mM. A linear response of the biosensor was obtained in the ammonium concentration range of 0.005 to 0.5 mM with a detection limit of 0.005 mM. The reproducibility of the biosensor was good, with an observed relative standard deviation of 5.9% (n=8). The biosensor was found to be stable for at least 1 month when stored dry at 4 degrees C.
    Matched MeSH terms: Enzymes, Immobilized/metabolism; Enzymes, Immobilized/chemistry
  20. Hanifah SA, Heng LY, Ahmad M
    Anal Sci, 2009 Jun;25(6):779-84.
    PMID: 19531887
    Electrochemical biosensors for phenolic compound determination were developed by immobilization of tyrosinase enzyme in a series of methacrylic-acrylic based biosensor membranes deposited directly using a photocuring method. By modifying the hydrophilicity of the membranes using different proportions of 2-hydroxyethyl methacrylate (HEMA) and butyl acrylate (nBA), we developed biosensor membranes of different hydrophilic characters. The differences in hydrophilicity of these membranes led to changes in the sensitivity of the biosensors towards different phenolic compounds. In general biosensors constructed from the methacrylic-acrylic based membranes showed the poorest response to catechol relative to other phenolic compounds, which is in contrast to many other biosensors based on tyrosinase. The decrease in hydrophilicity of the membrane also allowed better selectivity towards chlorophenols. However, phenol biosensors constructed from the more hydrophilic membrane materials demonstrated better analytical performance towards phenol compared with those made from less hydrophilic ones. For the detection of phenols, these biosensors with different membranes gave detection limits of 0.13-0.25 microM and linear response range from 6.2-54.2 microM phenol. The phenol biosensors also showed good phenol recovery from landfill leachate samples (82-117%).
    Matched MeSH terms: Enzymes, Immobilized/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links