Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Zheng S, Zhang H, Lakshmipriya T, Gopinath SCB, Yang N
    Biomed Res Int, 2019;2019:9726967.
    PMID: 31380444 DOI: 10.1155/2019/9726967
    Gestational diabetes (hyperglycaemia) is an elevated blood sugar level diagnosed during the period of pregnancy and affects the baby's health. Hyperglycaemia has been found within the gestational weeks between 24 and 28, and the foetus has also the possibility of getting out prior to this test frame; it causes excessive birth weight, early birth, low-blood sugar level, respiratory distress syndrome, and type-2 diabetes to the mother. It creates a mandatory situation to identify the hyperglycaemia at least during the pregnancy weeks from 18 to 20. Further, a continuous monitoring of the level of glucose is necessary for the proper delivery. In this work, a method is introduced for glucose detection at 0.06 mg/mL, assisted by gold nanorod (GNR)-conjugated glucose oxidase (GOx) on interdigitated electrode sensor. In the absence of GNR, GOx shows the limit of glucose detection to be 0.25 mg/mL. Moreover, with GOx-GNR the reactions of all the glucose concentrations have recorded higher levels of the current from the baseline. With the specificity analysis, it was found that the glucose only reacts with GOx-GNR and discriminates other sugars efficiently. This method of detection is useful to diagnose and continuously monitor the glucose level during the pregnancy period.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  2. Zain ZM, O'Neill RD, Lowry JP, Pierce KW, Tricklebank M, Dewa A, et al.
    Biosens Bioelectron, 2010 Feb 15;25(6):1454-9.
    PMID: 19945264 DOI: 10.1016/j.bios.2009.10.049
    D-serine has been implicated as a brain messenger, promoting not only neuronal signalling but also synaptic plasticity. Thus, a sensitive tool for D-serine monitoring in brain is required to understand the mechanisms of D-serine release from glia cells. A biosensor for direct fixed potential amperometric monitoring of D-serine incorporating mammalian D-amino acid oxidase (DAAO) immobilized on a Nafion coated poly-ortho-phenylenediamine (PPD) modified Pt-Ir disk electrode was therefore developed. The combined layers of PPD and Nafion enhanced the enzyme activity and biosensor efficiency by approximately 2-fold compared with each individual layer. A steady state response time (t(90%)) of 0.7+/-0.1s (n=8) and limit of detection 20+/-1 nM (n=8) were obtained. Cylindrical geometry showed lower sensitivity compared to disk geometry (61+/-7 microA cm(-2) mM(-1), (n=4), R(2)=0.999). Interference by ascorbic acid (AA), the main interference species in the central nervous system and other neurochemical electroactive molecules was negligible. Implantation of the electrode and microinjection of D-serine into rat brain striatal extracellular fluid demonstrated that the electrode was capable of detecting D-serine in brain tissue in vivo.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  3. Ulianas A, Heng LY, Ahmad M
    Sensors (Basel), 2011;11(9):8323-38.
    PMID: 22164078 DOI: 10.3390/s110908323
    New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294) for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97) with a limit of detection of 9.97 μM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5) with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  4. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A
    Appl Biochem Biotechnol, 2015 Feb;175(4):1817-42.
    PMID: 25427594 DOI: 10.1007/s12010-014-1417-x
    Nanobiocatalysis is a new frontier of emerging nanosized material support in enzyme immobilization application. This paper is about a comprehensive review on cellulose nanofibers (CNF), including their structure, surface modification, chemical coupling for enzyme immobilization, and potential applications. The CNF surface consists of mainly -OH functional group that can be directly interacted weakly with enzyme, and its binding can be improved by surface modification and interaction of chemical coupling that forms a strong and stable covalent immobilization of enzyme. The knowledge of covalent interaction for enzyme immobilization is important to provide more efficient interaction between CNF support and enzyme molecule. Enzyme immobilization onto CNF is having potential for improving enzymatic performance and production yield, as well as contributing toward green technology and sustainable sources.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  5. Sukri SSM, Mimi Sakinah AM
    Appl Biochem Biotechnol, 2018 Jan;184(1):278-290.
    PMID: 28676961 DOI: 10.1007/s12010-017-2542-0
    The present study explores the utilisation of a new raw material from lignocellulose biomass, Meranti wood sawdust (MWS) for high commercial value xylooligosaccharides (XOS) production using immobilised xylanase. The xylanase was immobilised by a combination of entrapment and covalent binding techniques. The hemicellulosic xylan from MWS was extracted using a standard chlorite delignification method. The production of total and derivatives of XOS from the degradation of the hemicellulosic xylan of MWS were compared to the production from the commercial xylan from Beechwood. The utilisation of the extracted xylan from MWS yielded 0.36 mg/mL of total XOS after 60 h of hydrolysis. During the hydrolysis reaction, the immobilised xylanase released a lower degree of polymerisation (DP) of XOS, mainly X2 and X3, which were the major products of xylan degradation by xylanase enzymes. The production of XOS with a lower DP from MWS demonstrated the biotechnological potential of the MWS in the future. The XOS production retained about 70% of its initial XOS production during the second cycle. This is also the first report on the utilisation of MWS wastes in enzymatic hydrolysis using immobilised xylanase for XOS production.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  6. Serri NA, Kamaruddin AH, Long WS
    Bioprocess Biosyst Eng, 2006 Oct;29(4):253-60.
    PMID: 16868763
    Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  7. Sayyed RZ, Bhamare HM, Sapna, Marraiki N, Elgorban AM, Syed A, et al.
    PLoS One, 2020;15(6):e0229968.
    PMID: 32497077 DOI: 10.1371/journal.pone.0229968
    Although laccase has been recognized as a wonder molecule and green enzyme, the use of low yielding fungal strains, poor production, purification, and low enzyme kinetics have hampered its large-scale application. Thus,this study aims to select high yielding fungal strains and optimize the production, purification, and kinetics of laccase of Aspergillus sp. HB_RZ4. The results obtained indicated that Aspergillus sp. HB_RZ4 produced a significantly large amount of laccase under meso-acidophilic shaking conditions in a medium containing glucose and yeast extract. A 25 μM CuSO4 was observed to enhance the enzyme yield. The enzyme was best purified on a Sephadex G-100 column. The purified enzyme resembled laccase of A. flavus. The kinetics of the purified enzyme revealed high substrate specificity and good velocity of reaction,using ABTS as a substrate. The enzyme was observed to be stable over various pH values and temperatures. The peptide structure of the purified enzyme was found to resemble laccase of A. kawachii IFO 4308. The fungus was observed to decolorize various dyes independent of the requirement of a laccase mediator system.Aspergillus sp. HB_RZ4 was observed to be a potent natural producer of laccase, and it decolorized the dyes even in the absence of a laccase mediator system. Thus, it can be used for bioremediation of effluent that contains non-textile dyes.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  8. Saeedfar K, Heng LY, Ling TL, Rezayi M
    Sensors (Basel), 2013;13(12):16851-66.
    PMID: 24322561 DOI: 10.3390/s131216851
    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  9. Saat MN, Mohamad Annuar MS
    Biotechnol Appl Biochem, 2020 May;67(3):354-365.
    PMID: 31746015 DOI: 10.1002/bab.1859
    One-pot synthesis of sugar-functionalized oligomeric caprolactone was carried out by lipase-catalyzed esterification of ε-caprolactone (ECL) with methyl-d-glucopyranoside (MGP) followed by the elongation of functionalized oligomer chain. Functionalization was performed in a custom-fabricated glass reactor equipped with Rushton turbine impeller and controlled temperature at 60 °C using tert-butanol as reaction medium. The overall reaction steps include MGP esterification of ECL monomer and its subsequent elongation by free 6-hydroxyhexanoate monomer units. A ping-pong bi-bi mechanism without ternary complex was proposed for esterification of ECL and MGP with apparent values of kinetic constant, namely maximal velocity (Vmax ), Michaelis constant for MGP (KmMGP ), and Michaelis constant for ECL (KmECL ) at 3.848 × 10-3  M H-1 , 8.189 × 10-2  M, and 6.050 M, respectively. Chain propagation step of MGP-functionalized ECL oligomer exhibits the properties of living polymerization mechanism. Linear relationship between conversion (%) and number average molecular weight, Mn (g mol-1 ), of functionalized oligomer was observed. Synthesized functionalized oligomer showed narrow range of molecular weight from 1,400 to 1,600 g mol-1 with more than 90% conversion achieved. Structural analysis confirmed the presence of covalent bond between the hydroxyl group in MGP with carboxyl end group of ECL oligomer.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  10. Ridhuan NS, Abdul Razak K, Lockman Z
    Sci Rep, 2018 09 13;8(1):13722.
    PMID: 30213995 DOI: 10.1038/s41598-018-32127-5
    Highly oriented ZnO nanorod (NR) arrays were fabricated on a seeded substrate through a hydrothermal route. The prepared ZnO nanorods were used as an amperometric enzyme electrode, in which glucose oxidase (GOx) was immobilised through physical adsorption. The modified electrode was designated as Nafion/GOx/ZnO NRs/ITO. The morphology and structural properties of the fabricated ZnO nanorods were analysed using field-emission scanning electron microscope and X-ray diffractometer. The electrochemical properties of the fabricated biosensor were studied by cyclic voltammetry and amperometry. Electrolyte pH, electrolyte temperature and enzyme concentration used for immobilisation were the examined parameters influencing enzyme activity and biosensor performance. The immobilised enzyme electrode showed good GOx retention activity. The amount of electroactive GOx was 7.82 × 10-8 mol/cm2, which was relatively higher than previously reported values. The Nafion/GOx/ZnO NRs/ITO electrode also displayed a linear response to glucose ranging from 0.05 mM to 1 mM, with a sensitivity of 48.75 µA/mM and a low Michaelis-Menten constant of 0.34 mM. Thus, the modified electrode can be used as a highly sensitive third-generation glucose biosensor with high resistance against interfering species, such as ascorbic acid, uric acid and L-cysteine. The applicability of the modified electrode was tested using human blood samples. Results were comparable with those obtained using a standard glucometer, indicating the excellent performance of the modified electrode.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  11. Rahman NK, Kamaruddin AH, Uzir MH
    Bioprocess Biosyst Eng, 2011 Aug;34(6):687-99.
    PMID: 21327986 DOI: 10.1007/s00449-011-0518-y
    The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  12. Rahman INA, Attan N, Mahat NA, Jamalis J, Abdul Keyon AS, Kurniawan C, et al.
    Int J Biol Macromol, 2018 Aug;115:680-695.
    PMID: 29698760 DOI: 10.1016/j.ijbiomac.2018.04.111
    The chemical-catalyzed transesterification process to produce biofuels i.e. pentyl valerate (PeVa) is environmentally unfriendly, energy-intensive with tedious downstream treatment. The present work reports the use of Rhizomucor miehei lipase (RML) crosslinked onto magnetic chitosan/chitin nanoparticles (RML-CS/CH/MNPs). The approach used to immobilize RML onto the CS/CH/MNPs yielded RML-CS/CH/MNPs with an immobilized protein loading and specific activity of 7.6 mg/g and 5.0 U·g-1, respectively. This was confirmed by assessing data of field emission scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis and Fourier transform infrared spectroscopy. A three-level-four-factor Box-Behnken design (incubation time, temperature, substrate molar ratio, and enzyme loading) was used to optimize the RML-CS/CH/MNP-catalyzed esterification synthesis of PeVa. Under optimum condition, the maximum yield of PeVa (97.8%) can be achieved in 5 h at 50 °C using molar ratio valeric acid:pentanol (1:2) and an enzyme load of 2 mg/mL. Consequently, operational stability experiments showed that the protocol adopted to prepare the CS/CH/MNP nanoparticles had increased the durability of RML. The RML-CS/CH/MNP could catalyze up to eight successive esterification cycles to produce PeVa. The study also demonstrated the functionality of CS/CH/MNP nanoparticles as an eco-friendly support matrix for improving enzymatic activity and operational stability of RML to produce PeVa.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  13. Onoja E, Wahab RA
    Appl Biochem Biotechnol, 2020 Oct;192(2):585-599.
    PMID: 32495234 DOI: 10.1007/s12010-020-03348-0
    Strategies to immobilize the individual enzymes are crucial for enhancing catalytic applicability and require a controlled immobilization process. Herein, protocol for immobilizing Candida rugosa lipase (CRL) onto modified magnetic silica derived from oil palm leaves ash (OPLA) was optimized for the effects of concentration of CRL, immobilization time, and temperature, monitored by titrimetric and spectrometric methods. XRD and TGA-DTG spectrometric observations indicated that OPLA-silica was well coated over magnetite (SiO2-MNPs) and CRLs were uniformly bound by covalent bonds to SiO2-MNPs (CRL/Gl-A-SiO2-MNPs). The optimized immobilization protocol showed that in the preparation of CRL/Gl-A-SiO2-MNPs, CRL with 68.3 mg/g protein loading and 74.6 U/g specific activity was achieved using 5 mg/mL of CRL, with an immobilization time of 12 h at 25 °C. The present work also demonstrated that acid-pretreated OPLA is a potential source of renewable silica, envisioning its applicability for practical use in enzymatic catalysis on solid support.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  14. Onoja E, Chandren S, Razak FIA, Wahab RA
    J Biotechnol, 2018 Oct 10;283:81-96.
    PMID: 30063951 DOI: 10.1016/j.jbiotec.2018.07.036
    The study reports the preparation of a composite consisting of magnetite coated with nanosilica extracted from oil palm leaves (OPL) ash as nanosupports for immobilization of Candida rugosa lipase (CRL) and its application for the synthesis of butyl butyrate. Results of immobilization parameters showed that ∼ 80% of CRL (84.5 mg) initially offered was immobilized onto the surface of the nanosupports to yield a maximum protein loading and specific activity of 67.5 ± 0.72 mg/g and 320.8 ± 0.42 U/g of support, respectively. Surface topography, morphology as well as information on surface composition obtained by Raman spectroscopy, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy showed that CRL was successfully immobilized onto the nanosupports, affirming its biocompatibility. Under optimal conditions (3.5 mg/mL protein loading, at 45 ℃, 3 h and molar ratio 2:1 (1-butanol:n-butyric acid) the CRL/Gl-A-SiO2-MNPs gave a maximum yield of 94 ± 0.24% butyl butyrate as compared to 84 ± 0.32% in the lyophilized CRL. CRL/Gl-A-SiO2-MNPs showed an extended operational stability, retaining 50% of its initial activity after 17 consecutive esterification cycles. The results indicated that OPL derived nanosilica coated on magnetite can potentially be employed as carrier for lipase immobilization in replacement of the non-renewable conventionalsilica sources.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  15. Ong CB, Annuar MSM
    Prep Biochem Biotechnol, 2018 Feb 07;48(2):181-187.
    PMID: 29341838 DOI: 10.1080/10826068.2018.1425707
    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  16. Nawawi NN, Hashim Z, Manas NHA, Azelee NIW, Illias RM
    Int J Biol Macromol, 2020 Apr 01;148:1222-1231.
    PMID: 31759025 DOI: 10.1016/j.ijbiomac.2019.10.101
    Enzymatic synthesis of maltooligosaccharides is hampered due to lack of stability of soluble enzyme. This limitation can be tackled by cross linked enzyme aggregates (CLEAs) immobilization approach. However, substrate diffusion is a major bottleneck in cross linking technology. Herein, CLEAs of maltogenic amylase from Bacillus lehensis G1 (Mag1) was developed with addition of porous agent (Mag1-p-CLEAs). Comparison of thermal, pH and kinetic analysis with CLEAs without porous agent (Mag1-CLEAs) and free Mag1 was performed. Mag1-p-CLEAs with porous structure prepared at 0.8% (w/v) of citrus pectin (porous agent), 0.25% (w/v) of chitosan (cross linker) and cross linked for 1.5 h yielded 91.20% activity. 80% of activity is retained after 30 min of incubation at 40 °C and showed longer half-life than free Mag1 and Mag1-CLEAs. Mag1-p-CLEAs also showed pH stability at acidic and alkaline pH. The 1.68-fold increase in Vmax value in comparison to Mag1-CLEAs showed that the presence of pores of Mag1-p-CLEAs enhanced the beta-cyclodextrin accessibility. The increase in high catalytic efficiency (Kcat/Km) value, 1.90-fold and 1.05-fold showed that it also has better catalytic efficiency than free Mag1 and Mag1-CLEAs, respectively. Mag1-p-CLEAs not only improved substrate diffusibility of CLEAs, but also leads to higher thermal and pH stability of Mag1.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  17. Mohd Syukri MS, A Rahman R, Mohamad Z, Md Illias R, Nik Mahmood NA, Jaafar NR
    Int J Biol Macromol, 2021 Jan 01;166:876-883.
    PMID: 33144251 DOI: 10.1016/j.ijbiomac.2020.10.244
    Enzyme immobilization has been known to be one of the methods to improve the stability and reusability of enzyme. In this study, a strategy to optimize laccase immobilization on polyethylene terephthalate grafted with maleic anhydride electrospun nanofiber mat (PET-g-MAH ENM) was developed. The development involves the screening and optimization processes of the crucial factors that influence the immobilization yield such as enzyme concentration, pH values, covalent bonding (CV) time, CV temperature, crosslinking (CL) time, CL temperature and glutaraldehyde concentration using two-level factorial design and Box-Behnken design (BBD), respectively. It was found that laccase concentration, pH values and glutaraldehyde concentration play important role in enhancing the immobilization yield of laccase on PET-g-MAH ENM in the screening process. Subsequently, the optimization result showed at 0.28 mg/ml laccase concentration, pH 3 and 0.45% (v/v) glutaraldehyde concentrations gave the highest immobilization yield at 87.64% which was 81.2% increment from the immobilization yield before optimization. Under the optimum condition, the immobilized laccase was able to oxidize 2, 2-azino-bis 3-ethylbenzothiazoline-6- sulfonic acid (ABTS) in a broad range of pH (pH 3-6) and temperature (20- 70 °C). Meanwhile, the kinetic parameters for Km and Vmax were 1.331 mM and 0.041 mM/min, respectively. It was concluded that the optimization of immobilized laccase on PET-g-MAH ENM enhance the performance of this biocatalyst.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
  18. Misson M, Zhang H, Jin B
    J R Soc Interface, 2015 Jan 06;12(102):20140891.
    PMID: 25392397 DOI: 10.1098/rsif.2014.0891
    The nanobiocatalyst (NBC) is an emerging innovation that synergistically integrates advanced nanotechnology with biotechnology and promises exciting advantages for improving enzyme activity, stability, capability and engineering performances in bioprocessing applications. NBCs are fabricated by immobilizing enzymes with functional nanomaterials as enzyme carriers or containers. In this paper, we review the recent developments of novel nanocarriers/nanocontainers with advanced hierarchical porous structures for retaining enzymes, such as nanofibres (NFs), mesoporous nanocarriers and nanocages. Strategies for immobilizing enzymes onto nanocarriers made from polymers, silicas, carbons and metals by physical adsorption, covalent binding, cross-linking or specific ligand spacers are discussed. The resulting NBCs are critically evaluated in terms of their bioprocessing performances. Excellent performances are demonstrated through enhanced NBC catalytic activity and stability due to conformational changes upon immobilization and localized nanoenvironments, and NBC reutilization by assembling magnetic nanoparticles into NBCs to defray the high operational costs associated with enzyme production and nanocarrier synthesis. We also highlight several challenges associated with the NBC-driven bioprocess applications, including the maturation of large-scale nanocarrier synthesis, design and development of bioreactors to accommodate NBCs, and long-term operations of NBCs. We suggest these challenges are to be addressed through joint collaboration of chemists, engineers and material scientists. Finally, we have demonstrated the great potential of NBCs in manufacturing bioprocesses in the near future through successful laboratory trials of NBCs in carbohydrate hydrolysis, biofuel production and biotransformation.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  19. Lian W, Li D, Zhang L, Wang W, Faiza M, Tan CP, et al.
    Enzyme Microb Technol, 2018 Oct;117:56-63.
    PMID: 30037552 DOI: 10.1016/j.enzmictec.2018.06.007
    Conjugated linoleic acid (CLA)-rich triacylglycerols (TAG) have received significant attention owing to their health promoting properties. In this study, CLA-rich TAG were successfully synthesized by an immobilized mutant lipase (MAS1-H108A)-catalyzed esterification of CLA-rich fatty acids and glycerol under vacuum. MAS1-H108A was first immobilized onto ECR1030 resin. Results showed that the lipase/support ratio of 41 mg/g was suitable for the immobilization and the thermostability of immobilized MAS1-H108A was greatly enhanced. Subsequently, the immobilized MAS1-H108A was employed for the synthesis of CLA-rich TAG and 95.21% TAG with 69.19% CLA was obtained under the optimized conditions. The TAG content (95.21%) obtained by immobilized MAS1-H108A is the reported highest value thus far, which was significantly higher than that (9.26%) obtained by Novozym 435 under the same conditions. Although the TAG content comparable to the results obtained in this study could also be obtained by Novozym 435, the used enzyme amount is approximately 5-fold of the immobilized MAS1-H108A. Additionally, the immobilized MAS1-H108A exhibited excellent recyclability during esterification retaining 95.11% of its initial activity after 10 batches. Overall, such immobilized mutant lipase with superior esterification activity and recyclability has the potential to be used in oils and fats industry.
    Matched MeSH terms: Enzymes, Immobilized/chemistry
  20. Lian W, Wang W, Tan CP, Wang J, Wang Y
    Bioprocess Biosyst Eng, 2019 Feb;42(2):321-329.
    PMID: 30421172 DOI: 10.1007/s00449-018-2036-7
    LML-type structured lipids are one type of medium- and long-chain triacylglycerols. LML was synthesized using immobilized Talaromyces thermophilus lipase (TTL)-catalyzed interesterification of tricaprylin and ethyl linoleate. The resin AB-8 was chosen, and the lipase/support ratio was determined to be 60 mg/g. Subsequently, the immobilized TTL with strict sn-1,3 regiospecificity was applied to synthesize LML. Under the optimized conditions (60 °C, reaction time 6 h, enzyme loading of 6% of the total weight of substrates, substrate of molar ratio of ethyl linoleate to tricaprylin of 6:1), Triacylglycerols with two long- and one medium-chain FAs (DL-TAG) content as high as 52.86 mol% was obtained. Scale-up reaction further verified the industrial potential of the established process. The final product contained 85.24 mol% DL-TAG of which 97 mol% was LML after purification. The final product obtained with the high LML content would have substantial potential to be used as functional oils.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links