Displaying publications 1 - 20 of 127 in total

Abstract:
Sort:
  1. Tisserand R, van der Ent A, Nkrumah PN, Didier S, Sumail S, Morel JL, et al.
    Sci Total Environ, 2024 Apr 01;919:170691.
    PMID: 38325468 DOI: 10.1016/j.scitotenv.2024.170691
    Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.
    Matched MeSH terms: Farms
  2. Gao J, Al Mamun A, Yang Q, Rahman MK, Masud MM
    Sci Rep, 2024 Jan 18;14(1):1592.
    PMID: 38238468 DOI: 10.1038/s41598-024-52064-w
    The objective of this study was to examine the relationships among environmental and health values, ecological worldview, perception of consequences, the ascription of responsibility, and personal norms in the context of the value-belief-norm (VBN) model and how compatibility influences the intentions and behaviors of Chinese youth regarding the use of hydroponic farming technology. The study employed a survey questionnaire to collect data from the target population. The sample size was determined through a power analysis to ensure sufficient statistical power for the analysis. A total of 727 potential respondents' responses were analyzed using SmartPLS (4.0) to perform structural equation modeling. The results confirmed that environmental, emotional, and health values significantly associated with individuals' ecological worldviews. There was an interconnection between ecological worldview, awareness of consequences, and ascription of responsibility, and all three significantly influenced personal norms. The key determinants of the intentions and behaviors to adopt hydroponic farming technology are personal norms and technology compatibility. Therefore, to promote and motivate the interest and intention to use hydroponics among unemployed youth, government agencies, and related companies should focus on providing technology-related and pro-environmental information and training. This is expected to increase the acceptance and awareness of hydroponics among this group, thus increasing the adoption rate of hydroponics.
    Matched MeSH terms: Farms
  3. Sadiq MB, Ramanoon SZ, Mansor R, Syed-Hussain SS, Mossadeq WMS
    Trop Anim Health Prod, 2024 Jan 17;56(2):45.
    PMID: 38231431 DOI: 10.1007/s11250-024-03889-0
    Given the data paucity on dairy farmers' perspectives regarding bovine lameness and hoof diseases, particularly in South East Asian countries, this study was conducted to assess the knowledge, attitude and practices toward lameness and hoof health among dairy cattle farmers in Malaysia. An online-based and face-to-face survey was conducted among 114 dairy farmers from four states in Peninsular Malaysia. Data were analysed using descriptive statistics, principal component analysis and an independent sample t-test. Overall, farmers demonstrated satisfactory knowledge and attitude regarding lameness and its impact on dairy cattle welfare and production. Lameness was ranked the second most important health issue in dairy farms after mastitis. Notably, 90% reported the presence of at least one lame cow on their farms, and 55% stated lameness as the reason for culling their cows. While sole ulcer was the hoof lesion mostly identified by farmers, 75% of them underestimated lameness prevalence on their farms and rarely implemented management strategies such as preventive hoof trimming and footbath. Farmers' educational qualification influenced their understanding of the impact of lameness on dairy cattle production. Despite reflecting satisfactory knowledge and attitude towards lameness in dairy cows, farmers in this study need to improve their current management practices to address lameness problem in their herds. Educating farmers on the importance of early detection and prompt treatment, and preventive measures are crucial for lameness control and improving hoof health in these dairy farms.
    Matched MeSH terms: Farms
  4. Liu S, Dong Y, McConkey KR, Tran LP, Wang F, Liu H, et al.
    Ambio, 2023 Dec;52(12):1939-1951.
    PMID: 37392251 DOI: 10.1007/s13280-023-01898-1
    China prioritizes ecological civilization construction and embraces the concept of "lucid waters and lush mountains are invaluable assets." Great achievements have been made in ecological protection and restoration through implementing a series of policies and projects. This paper reviews the history of ecological restoration in China and the current development of the "integrated protection and restoration project of mountains, rivers, forests, farmlands, lakes, grasslands, and deserts (IPRP)." Furthermore, the characteristics of IPRP were systematically elaborated from the perspectives of the ecological civilization thought, the policy management, and the key scientific issues. Also, the current achievements were summarized in the fields of national ecological space management, biodiversity conservation, and ecological protection and restoration. Existing challenges in management policy, scientific issues, and engineering practices were highlighted. Future perspectives include ecological space control, nature-based Solutions, biodiversity big data platform, modern techniques, and value realization mechanisms of ecological products.
    Matched MeSH terms: Farms
  5. Kumar P, Abubakar AA, Verma AK, Umaraw P, Adewale Ahmed M, Mehta N, et al.
    Crit Rev Food Sci Nutr, 2023 Nov;63(33):11830-11858.
    PMID: 35821661 DOI: 10.1080/10408398.2022.2096562
    Treating livestock as senseless production machines has led to rampant depletion of natural resources, enhanced greenhouse gas emissions, gross animal welfare violations, and other ethical issues. It has essentially instigated constant scrutiny of conventional meat production by various experts and scientists. Sustainably in the meat sector is a big challenge which requires a multifaced and holistic approach. Novel tools like digitalization of the farming system and livestock market, precision livestock farming, application of remote sensing and artificial intelligence to manage production and environmental impact/GHG emission, can help in attaining sustainability in this sector. Further, improving nutrient use efficiency and recycling in feed and animal production through integration with agroecology and industrial ecology, improving individual animal and herd health by ensuring proper biosecurity measures and selective breeding, and welfare by mitigating animal stress during production are also key elements in achieving sustainability in meat production. In addition, sustainability bears a direct relationship with various social dimensions of meat production efficiency such as non-market attributes, balance between demand and consumption, market and policy failures. The present review critically examines the various aspects that significantly impact the efficiency and sustainability of meat production.
    Matched MeSH terms: Farms
  6. Tsong JL, Khor SM
    Anal Methods, 2023 Jul 06;15(26):3125-3148.
    PMID: 37376849 DOI: 10.1039/d3ay00647f
    Unpredictable natural disasters, disease outbreaks, climate change, pollution, and war constantly threaten food crop production. Smart and precision farming encourages using information or data obtained by using advanced technology (sensors, AI, and IoT) to improve decision-making in agriculture and achieve high productivity. For instance, weather prediction, nutrient information, pollutant assessment, and pathogen determination can be made with the help of new analytical and bioanalytical methods, demonstrating the potential for societal impact such as environmental, agricultural, and food science. As a rising technology, biosensors can be a potential tool to promote smart and precision farming in developing and underdeveloped countries. This review emphasizes the role of on-field, in vivo, and wearable biosensors in smart and precision farming, especially those biosensing systems that have proven with suitably complex and analytically challenging samples. The development of various agricultural biosensors in the past five years that fulfill market requirements such as portability, low cost, long-term stability, user-friendliness, rapidity, and on-site monitoring will be reviewed. The challenges and prospects for developing IoT and AI-integrated biosensors to increase crop yield and advance sustainable agriculture will be discussed. Using biosensors in smart and precision farming would ensure food security and revenue for farming communities.
    Matched MeSH terms: Farms
  7. Huang S, Nik Azman NH
    PMID: 36833648 DOI: 10.3390/ijerph20042956
    As a means of enhancing food security, efficient agricultural processing and the maintenance of a smooth supply chain are essential for ensuring food quality and reducing food wastage. Agricultural enterprises play a crucial role in the processing and transportation of food from farms to dinner tables. Operating income growth plays the vital role of ensuring that agricultural enterprises function in a stable manner while also indicating the quantity and quality of market food supply. Therefore, the objective of this study is to explore the impact of digital inclusive finance on food security by analyzing the effect of digital inclusive finance on the operating income of agricultural enterprises in China. By applying pooled OLS analysis to Chinese agricultural enterprises that are listed in the National Equities Exchange and Quotations, this study finds that digital inclusive finance can help improve agricultural operating income. The results reveal that digital inclusive finance can facilitate the promotion of agricultural operating income by increasing the supply of financing, accelerating inventory liquidity, and supporting investment in research and development. In addition, this study concludes that digital inclusive finance is more effective for increasing agricultural operating income as a result of its wider coverage and deeper utilization. Furthermore, the development of traditional finance is still necessary for the digitization of digital inclusive finance to be effective.
    Matched MeSH terms: Farms
  8. Tan HS, Yan P, Agustie HA, Loh HS, Rayamajhi N, Fang CM
    Lett Appl Microbiol, 2023 Jan 23;76(1).
    PMID: 36688778 DOI: 10.1093/lambio/ovac044
    Extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (AmpCs)-producing Enterobacteriaceae have been increasingly reported and imposing significant threat to public. Livestock production industry might be the important source for clinically important ESBL-producing Enterobacteriaceae. This study aims to investigate the resistance profile, phenotypic ESBL production, beta-lactamase genes, virulence factors, and plasmid replicon types among 59 Enterobacteriaceae strains isolated from poultry faecal samples in Malaysia's commercial poultry farm. There were 38.7% and 32.3% of Escherichia coli resistant to cefotaxime and cefoxitin, respectively, while Klebsiellaspp. demonstrated resistance rate of 52.6% to both mentioned antimicrobials. Majority of the E. coli isolates carried blaTEM and blaCMY-2 group. blaSHV was the most prevalent gene detected in Klebsiellaspp., followed by blaDHA and blaTEM. Resistance to extended spectrum cephalosporin in our isolates was primarily mediated by plasmid mediated AmpC beta-lactamase such as CMY-2 group and DHA enzyme. The CTX-M genes were found in two ESBL-producing E. coli. IncF, IncI1, and IncN plasmids were most frequently detected in E. coli and Klebsiellaspp. The virulence factor, including EAST1 and pAA were identified at low frequency. This study highlights the poultry as a reservoir of resistance and virulence determinants and prevalence of plasmids in Enterobacteriaceae might drive their dissemination.
    Matched MeSH terms: Farms
  9. Hao Y, Sun H, Zeng X, Dong G, Kronzucker HJ, Min J, et al.
    Environ Pollut, 2023 Jan 15;317:120805.
    PMID: 36470457 DOI: 10.1016/j.envpol.2022.120805
    Microplastics (MPs) accumulation in farmland has attracted global concern. Smallholder farming is the dominant type in China's agriculture. Compared with large-scale farming, smallholder farming is not constrained by restrictive environmental policies and public awareness about pollution. Consequently, the degree to which smallholder farming is associated with MP pollution in soils is largely unknown. Here, we collected soil samples from both smallholder and large-scale vegetable production systems to determine the distribution and characteristics of MPs. MP abundance in vegetable soils was 147.2-2040.4 MP kg-1 (averaged with 500.8 MP kg-1). Soil MP abundance under smallholder cultivation (730.9 MP kg-1) was twice that found under large-scale cultivation (370.7 MP kg-1). MP particle sizes in smallholder and large-scale farming were similar, and were mainly <1 mm. There were also differences in MP characteristics between the two types of vegetable soils: fragments (60%) and fibers (34%) were dominant under smallholder cultivation, while fragments (42%), fibers (42%), and films (11%) were dominant under large-scale cultivation. We observed a significant difference in the abundance of fragments and films under smallholder versus large-scale cultivation; the main components of MPs under smallholder cultivation were PP (34%), PE (28%), and PE-PP (10%), while these were PE (29%), PP (16%), PET (16%), and PE-PP (13%) under large-scale cultivation. By identifying the shape and composition of microplastics, it can be inferred that agricultural films were not the main MP pollution source in vegetable soil. We show that smallholder farming produces more microplastics pollution than large-scale farming in vegetable soil.
    Matched MeSH terms: Farms
  10. Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, et al.
    PLoS One, 2023;18(5):e0285743.
    PMID: 37205716 DOI: 10.1371/journal.pone.0285743
    Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
    Matched MeSH terms: Farms
  11. Wimalasiri EM, Ashfold MJ, Jahanshiri E, Walker S, Azam-Ali SN, Karunaratne AS
    PLoS One, 2023;18(3):e0283298.
    PMID: 36952502 DOI: 10.1371/journal.pone.0283298
    Current agricultural production depends on very limited species grown as monocultures that are highly vulnerable to climate change, presenting a threat to the sustainability of agri-food systems. However, many hundreds of neglected crop species have the potential to cater to the challenges of climate change by means of resilience to adverse climate conditions. Proso millet (Panicum miliaceum L.), one of the underutilised minor millets grown as a rainfed subsistence crop, was selected in this study as an exemplary climate-resilient crop. Using a previously calibrated version of the Agricultural Production Systems Simulator (APSIM), the sensitivity of the crop to changes in temperature and precipitation was studied using the protocol of the Coordinated Climate Crop Modelling Project (C3MP). The future (2040-2069) production was simulated using bias-corrected climate data from 20 general circulation models of the Coupled Model Intercomparison Project (CMIP5) under RCP4.5 and 8.5 scenarios. According to the C3MP analysis, we found a 1°C increment of temperature decreased the yield by 5-10% at zero rainfall change. However, Proso millet yields increased by 5% within a restricted climate change space of up to 2°C of warming with increased rainfall. Simulated future climate yields were lower than the simulated yields under the baseline climate of the 1980-2009 period (mean 1707 kg ha-1) under both RCP4.5 (-7.3%) and RCP8.5 (-16.6%) though these changes were not significantly (p > 0.05) different from the baseline yields. Proso millet is currently cultivated in limited areas of Sri Lanka, but our yield mapping shows the potential for expansion of the crop to new areas under both current and future climates. The results of the study, indicating minor impacts from projected climate change, reveal that Proso millet is an excellent candidate for low-input farming systems under changing climate. More generally, through this study, a framework that can be used to assess the climate sensitivity of underutilized crops was also developed.
    Matched MeSH terms: Farms
  12. Ali AS, Gari SR, Goodson ML, Walsh CL, Dessie BK, Ambelu A
    PLoS One, 2023;18(11):e0288425.
    PMID: 37939075 DOI: 10.1371/journal.pone.0288425
    INTRODUCTION: Childhood diarrhea is one of the major contributors to the morbidity of under-five children in Ethiopia. Although researchers determine the risk factors varyingly, the exposure route to the pathogens is usually complicated. This study aims to investigate the prevalence and risk factors of diarrhea among children under the age of five among wastewater irrigation farming households in Addis Ababa, Ethiopia.

    METHODS: Cross-sectional study was conducted among 402 farming households from November 2021 to February 2022. Data was collected using a face-to-face interviewer-administered questionnaire. Stata version 14 software was used to analyze data. Factors associated with the prevalence of diarrhea was identified using binary logistic regression. Multivariable analysis was carried out to determine an adjusted odds ratio at a confidence level of 95% and level of significance at 0.05.

    RESULTS: The overall prevalence of under-five children diarrheal cases was 22.3%. The odds of diarrhea are associated with a multitude of variables. Major wastewater-related determinants associated with diarrhea are body washing with irrigation water [AOR: 37.7, 95%CI (3.1, 358)], contaminated cloth with irrigation water [AOR:10.8,95%CI(0.6, 205)], use of protective clothing during farm work [28.9,95%CI (3.9, 215)], use of farm work cloths at home [AOR: 31.7, 95%CI (4.4, 226)], and bringing unwashed farm tools to home [94 (5.7, 1575)].

    CONCLUSION: The high prevalence of under-five children diarrheal disease among wastewater irrigation households was strongly associated with factors related to occupational exposure. Thus, to decrease childhood diarrheal among urban agriculture farmers, appropriate precautions need to be taken.

    Matched MeSH terms: Farms
  13. Senanayake S, Pradhan B, Huete A, Brennan J
    Sci Total Environ, 2021 Nov 10;794:148788.
    PMID: 34323751 DOI: 10.1016/j.scitotenv.2021.148788
    Healthy farming systems play a vital role in improving agricultural productivity and sustainable food production. The present study aimed to propose an efficient framework to evaluate ecologically viable and economically sound farming systems using a matrix-based analytic hierarchy process (AHP) and weighted linear combination method with geo-informatics tools. The proposed framework has been developed and tested in the Central Highlands of Sri Lanka. Results reveal that more than 50% of farming systems demonstrated moderate status in terms of ecological and economic aspects. However, two vulnerable farming systems on the western slopes of the Central Highlands, named WL1a and WM1a, were identified as very poor status. These farming systems should be a top priority for restoration planning and soil conservation to prevent further deterioration. Findings indicate that a combination of ecologically viable (nine indicators) and economical sound (four indicators) criteria are a practical method to scrutinize farming systems and decision making on soil conservation and sustainable land management. In addition, this research introduces a novel approach to delineate the farming systems based on agro-ecological regions and cropping areas using geo-informatics technology. This framework and methodology can be employed to evaluate the farming systems of other parts of the country and elsewhere to identify ecologically viable and economically sound farming systems concerning soil erosion hazards. The proposed approach addresses a new dimension of the decision-making process by evaluating the farming systems relating to soil erosion hazards and suggests introducing policies on priority-based planning for conservation with low-cost strategies for sustainable land management.
    Matched MeSH terms: Farms
  14. Behjati M, Mohd Noh AB, Alobaidy HAH, Zulkifley MA, Nordin R, Abdullah NF
    Sensors (Basel), 2021 Jul 26;21(15).
    PMID: 34372281 DOI: 10.3390/s21155044
    Currently, smart farming is considered an effective solution to enhance the productivity of farms; thereby, it has recently received broad interest from service providers to offer a wide range of applications, from pest identification to asset monitoring. Although the emergence of digital technologies, such as the Internet of Things (IoT) and low-power wide-area networks (LPWANs), has led to significant advances in the smart farming industry, farming operations still need more efficient solutions. On the other hand, the utilization of unmanned aerial vehicles (UAVs), also known as drones, is growing rapidly across many civil application domains. This paper aims to develop a farm monitoring system that incorporates UAV, LPWAN, and IoT technologies to transform the current farm management approach and aid farmers in obtaining actionable data from their farm operations. In this regard, an IoT-based water quality monitoring system was developed because water is an essential aspect in livestock development. Then, based on the Long-Range Wide-Area Network (LoRaWAN®) technology, a multi-channel LoRaWAN® gateway was developed and integrated into a vertical takeoff and landing drone to convey collected data from the sensors to the cloud for further analysis. In addition, to develop LoRaWAN®-based aerial communication, a series of measurements and simulations were performed under different configurations and scenarios. Finally, to enhance the efficiency of aerial-based data collection, the UAV path planning was optimized. Measurement results showed that the maximum achievable LoRa coverage when operating on-air via the drone is about 10 km, and the Longley-Rice irregular terrain model provides the most suitable path loss model for the scenario of large-scale farms, and a multi-channel gateway with a spreading factor of 12 provides the most reliable communication link at a high drone speed (up to 95 km/h). Simulation results showed that the developed system can overcome the coverage limitation of LoRaWAN® and it can establish a reliable communication link over large-scale wireless sensor networks. In addition, it was shown that by optimizing flight paths, aerial data collection could be performed in a much shorter time than industrial mission planning (up to four times in our case).
    Matched MeSH terms: Farms
  15. Azman NI, Wan-Mustapha WN, Goh YM, Hassim HA, Selamat J, Samsudin NIP
    Int J Food Microbiol, 2021 Jun 02;347:109205.
    PMID: 33901942 DOI: 10.1016/j.ijfoodmicro.2021.109205
    The present work aimed to determine the prevalence of aflatoxigenic Aspergillus section Flavi on different types of dairy goat's feed samples obtained from four dairy goat's farms around the central region of Peninsular Malaysia, and to examine the effects of climatic conditions (temperature, relative humidity) of the dairy goat's farms, and their feeding and storage practices on the fungal prevalence of different types of dairy goat's feed. A total of 60 goat's feed samples were obtained, and their proximate composition and water activity were determined, following which they were cultivated on DRBC and AFPA for total fungal load and Aspergillus section Flavi load determination, respectively. Fungal isolates were identified morphologically, and toxigenicity potentials of Aspergillus section Flavi isolates were determined using CCA. The temperature and relative humidity data of all farms were obtained from the Malaysian Meteorological Department. The total fungal loads (on DRBC) of the goat's feed samples were log 0.767 to 7.071 CFU/g which included the common feed contaminants such as Aspergillus, Fusarium, and Penicillium. The Aspergillus section Flavi loads (on AFPA) were log 0.667 to 3.206 CFU/g. Farm A yielded the highest number of Aspergillus section Flavi isolates as well as the highest number of aflatoxigenic isolates. It was found that climatic conditions and different practices between farms positively influenced the fungal prevalence on goat's feed samples based on the Pearson correlation analysis. The prevalence of mycotoxigenic isolates on goat's feed warrants for urgent intervention to ensure that goats are being fed with nutritionally adequate and safe feed. The presence of aflatoxigenic Aspergillus section Flavi isolates indicates the risk of aflatoxin B1 contamination on the goat's feed, aflatoxicosis development in the goats, and aflatoxin M1 bio-transformation in the goat's milk. This is a potential threat to the flourishing goat's milk industry in Malaysia.
    Matched MeSH terms: Farms
  16. Yeoh EK, Chong KC, Chiew CJ, Lee VJ, Ng CW, Hashimoto H, et al.
    One Health, 2021 Jun;12:100213.
    PMID: 33506086 DOI: 10.1016/j.onehlt.2021.100213
    While most countries in the Western Pacific Region (WPR) had similar trajectories of COVID-19 from January to May, their implementations of non-pharmaceutical interventions (NPIs) differed by transmission stages. To offer a better understanding for an implementation of multidisciplinary policies in COVID-19 control, we compared the impact of NPIs by assessing the transmissibility and severity of COVID-19 in different phases of the epidemic during the first five months in WPR. In this study, we estimated the piecewise instantaneous reproduction number (R
    t
    ) and the reporting delay-adjusted case-fatality ratio (dCFR) of COVID-19 in seven WPR jurisdictions: Hong Kong Special Administrative Region, Japan, Malaysia, Shanghai, Singapore, South Korea, and Taiwan. According to the results, implementing NPIs was associated with an apparent reduction of the piecewise R
    t
    in two epidemic waves in general. However, large cluster outbreaks raised the piecewise R
    t
    to a high level. We also observed relaxing the NPIs could result in an increase of R
    t
    . The estimated dCFR ranged from 0.09% to 1.59% among the jurisdictions, except in Japan where an estimate of 5.31% might be due to low testing efforts. To conclude, in conjunction with border control measures to reduce influx of imported cases which might cause local outbreaks, other NPIs including social distancing measures along with case finding by rapid tests are also necessary to prevent potential large cluster outbreaks and transmissions from undetected cases. A comparatively lower CFR may reflect the health system capacity of these jurisdictions. In order to keep track of sustained disease transmission due to resumption of economic activities, a close monitoring of disease transmissibility is recommended in the relaxation phase. The report of transmission of SARS CoV-2 to pets in Hong Kong and to mink in farm outbreaks highlight for the control of COVID-19 and emerging infectious disease, the One Health approach is critical in understanding and accounting for how human, animals and environment health are intricately connected.
    Matched MeSH terms: Farms
  17. Xiao SS, Mi JD, Mei L, Liang J, Feng KX, Wu YB, et al.
    Animals (Basel), 2021 Mar 16;11(3).
    PMID: 33809729 DOI: 10.3390/ani11030840
    The intestinal microbiota is increasingly recognized as an important component of host health, metabolism and immunity. Early gut colonizers are pivotal in the establishment of microbial community structures affecting the health and growth performance of chickens. White Lohmann layer is a common commercial breed. Therefore, this breed was selected to study the pattern of changes of microbiota with age. In this study, the duodenum, caecum and colorectum contents of white Lohmann layer chickens from same environment control farm were collected and analyzed using 16S rRNA sequencing to explore the spatial and temporal variations in intestinal microbiota. The results showed that the diversity of the microbial community structure in the duodenum, caecum and colorectum increased with age and tended to be stable when the layer chickens reached 50 days of age and the distinct succession patterns of the intestinal microbiota between the duodenum and large intestine (caecum and colorectum). On day 0, the diversity of microbes in the duodenum was higher than that in the caecum and colorectum, but the compositions of intestinal microbes were relatively similar, with facultative anaerobic Proteobacteria as the main microbes. However, the relative abundance of facultative anaerobic bacteria (Escherichia) gradually decreased and was replaced by anaerobic bacteria (Bacteroides and Ruminococcaceae). By day 50, the structure of intestinal microbes had gradually become stable, and Lactobacillus was the dominant bacteria in the duodenum (41.1%). The compositions of dominant microbes in the caecum and colorectum were more complex, but there were certain similarities. Bacteroides, Odoribacter and Clostridiales vadin BB60 group were dominant. The results of this study provide evidence that time and spatial factors are important factors affecting the intestinal microbiota composition. This study provides new knowledge of the intestinal microbiota colonization pattern of layer chickens in early life to improve the intestinal health of layer chickens.
    Matched MeSH terms: Farms
  18. Mohamad-Radzi NN, Che-Amat A, Aziz NAA, Babjee SMA, Mazlan M, Hamid NFS, et al.
    J Parasit Dis, 2021 Mar;45(1):169-175.
    PMID: 33746402 DOI: 10.1007/s12639-020-01291-9
    Mites infestation and gastrointestinal parasites including coccidia are common problems reported in pets, petting farms and farmed practices. Sarcoptes sp. and Cheyletiella sp. could be a potential zoonosis from rabbits to human. Detection of mites and coccidia with their zoonotic potential in meat-farmed rabbits from three (3) commercial farms in Selangor were investigated. Tape impression, fur pluck, skin scraping and ear swab tests were used for mites detection and faecal samples was used for coccidia examination by using McMaster's technique and the identification of Eimeria spp. was further analysed by sporulation technique. The overall prevalence of mites and Eimeria spp. (oocysts) in rabbits were 51.85% ± 0.38 (standard deviation; S.D.) and 76.47% ± 0.42 respectively. Sarcoptes scabiei was the most frequent mite found (25.92% ± 0.44), followed by Cheyletiella parasitovorax and Psoroptes cuniculi. Nine Eimeria spp. were identified and the oocysts of E. perforans shows the highest prevalence (64.71% ± 3.97) followed by E. exigua, E. coecicola, E. magna, E. flavescens, E. irresidua, E. intestinalis, E. media and E. stiedai. There was a significant difference (p = 0.013) where large-scale farm has a higher prevalence of coccidia than small scale farms apparently due to the excessive stocking density as coccidia are easily transmitted among rabbits through ingestion of sporulated oocysts. In conclusion, mites and coccidia are commonly present in the commercial rabbit farms, thus control and preventive measures should be executed to reduce the incidence of parasites. The zoonotic mites Sarcoptes scabiei and Cheyletiella parasitovorax detected in this study could be regarded as a public health concern especially when handling the rabbit.
    Matched MeSH terms: Farms
  19. Abdulrahman M, Gardner A, Yamaguchi N
    J Arid Environ, 2021 Feb;185:104379.
    PMID: 33162623 DOI: 10.1016/j.jaridenv.2020.104379
    The distributions of bat species in Qatar have not previously been recorded. We conducted the first nation-wide survey of bats in Qatar. Based on sonogram analysis, we identified Asellia tridens, Otonycteris hemprichii, and Pipistrellus kuhlii. The most commonly recorded species was Asellia tridens, the only species recorded in the northern half of the country. Contrary to our prediction, the likelihood of recording bats was not higher in the northern half of the country where there are many irrigated farms. The distributions of the bat species may result from differences in human land use and disturbance, and from the distance to the main body of the Arabian Peninsula. A key habitat feature for Asellia tridens and Otonycteris hemprichii may be the presence of roosting sites in less disturbed sinkholes/caves, which are therefore crucial for bat conservation.
    Matched MeSH terms: Farms
  20. Andersen SK, Staerk J, Kalhor E, Natusch DJD, da Silva R, Pfau B, et al.
    Data Brief, 2021 Feb;34:106708.
    PMID: 33506080 DOI: 10.1016/j.dib.2020.106708
    We collected data on the trade of seven turtle and tortoise species endemic to Indonesia and Malaysia (Amyda cartilaginea, Batagur borneoensis, Cuora amboinensis, Carettochelys insculpta, Heosemys annandalii, Heosemys grandis, and Heosemys spinosa). The data on those species included: operations costs of three breeding farms and one export facility; species life-history traits; and species international legal trade and confiscation data. We collected data for the facilities (one in Malaysia and three in Indonesia) using site visits and a semi-structured questionnaire. We conducted a literature review to compile relevant information on species' life-history traits to estimate breeding viability. We downloaded species-specific data on international trade from the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Trade Database for the exporting countries (Malaysia and Indonesia) for 2000-2015. We compared legal trade with confiscation data obtained from CITES. The data in this article can provide insights into the operations of turtle breeding farms in Southeast Asia. These data can be used as a reference for the inspection of breeding farms and for legislative bodies to determine whether captive breeding for select turtle species is feasible.
    Matched MeSH terms: Farms
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links