Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Liu M, Chen YY, Twu NC, Wu MC, Fang ZS, Dubruel A, et al.
    Poult Sci, 2024 Feb;103(2):103332.
    PMID: 38128459 DOI: 10.1016/j.psj.2023.103332
    In late 2020, an outbreak of Tembusu virus (TMUV)-associated disease occurred in a 45-day-old white Roman geese flock in Taiwan. Here, we present the identification and isolation of a novel goose-origin TMUV strain designated as NTU/C225/2020. The virus was successfully isolated using minimal-pathogen-free duck embryos. Phylogenetic analysis of the polyprotein gene showed that NTU/C225/2020 clustered together with the earliest isolates from Malaysia and was most closely related to the first Taiwanese TMUV strain, TP1906. Genomic analysis revealed significant amino acid variations among TMUV isolates in NS1 and NS2A protein regions. In the present study, we characterized the NTU/C225/2020 culture in duck embryos, chicken embryos, primary duck embryonated fibroblasts, and DF-1 cells. All host systems were susceptible to NTU/C225/2020 infection, with observable lesions. In addition, animal experiments showed that the intramuscular inoculation of NTU/C225/2020 resulted in growth retardation and hyperthermia in day-old chicks. Gross lesions in the infected chicks included hepatomegaly, hyperemic thymus, and splenomegaly. Viral loads and histopathological damage were displayed in various tissues of both inoculated and naïve co-housed chicks, confirming the direct chick-to-chick contact transmission of TMUV. This is the first in vivo study of a local TMUV strain in Taiwan. Our findings provide essential information for TMUV propagation and suggest a potential risk of disease outbreak in chicken populations.
    Matched MeSH terms: Flavivirus*
  2. Ang PC, Perumal V, Ibrahim MNM, Adnan R, Mohd Azman DK, Gopinath SCB, et al.
    Appl Microbiol Biotechnol, 2023 Mar;107(5-6):1503-1513.
    PMID: 36719432 DOI: 10.1007/s00253-023-12400-y
    Viruses have spread throughout the world and cause acute illness or death among millions of people. There is a growing concern about methods to control and combat early-stage viral infections to prevent the significant public health problem. However, conventional detection methods like polymerase chain reaction (PCR) requires sample purification and are time-consuming for further clinical diagnosis. Hence, establishing a portable device for rapid detection with enhanced sensitivity and selectivity for the specific virus to prevent further spread becomes an urgent need. Many research groups are focusing on the potential of the electrochemical sensor to become a key for developing point-of-care (POC) technologies for clinical analysis because it can solve most of the limitations of conventional diagnostic methods. Herein, this review discusses the current development of electrochemical sensors for the detection of respiratory virus infections and flaviviruses over the past 10 years. Trends in future perspectives in rapid clinical detection sensors on viruses are also discussed. KEY POINTS: • Respiratory related viruses and Flavivirus are being concerned for past decades. • Important to differentiate the cross-reactivity between the virus in same family. • Electrochemical biosensor as a suitable device to detect viruses with high performance.
    Matched MeSH terms: Flavivirus*
  3. Ain-Najwa MY, Yasmin AR, Omar AR, Arshad SS, Abu J, Mohammed HO, et al.
    One Health, 2020 Dec;10:100134.
    PMID: 32405525 DOI: 10.1016/j.onehlt.2020.100134
    West Nile virus (WNV) is a zoonotic mosquito-borne flavivirus that is harbored and amplified by wild birds via the enzootic transmission cycle. Wide range of hosts are found to be susceptible to WNV infection including mammals, amphibians and reptiles across the world. Several studies have demonstrated that WNV was present in the Malaysian Orang Asli and captive birds. However, no data are available on the WNV prevalence in wild birds found in Malaysia. Therefore this study was conducted to determine the serological and molecular prevalence of WNV in wild birds in selected areas in the West Coast of Peninsular Malaysia. Two types of wild birds were screened, namely migratory and resident birds in order to explore any possibility of WNV transmission from the migratory birds to the resident birds. Thus, a cross-sectional study was conducted at the migratory birds sanctuary located in Kuala Gula, Perak and Kapar, Selangor by catching 163 migratory birds, and 97 resident birds from Kuala Gula and Parit Buntar, Perak at different time between 2016 and 2017 (Total, n = 260). Blood and oropharyngeal swabs were collected for serological and molecular analysis, respectively. Serum were screened for WNV antibodies using a commercial competitive ELISA (c-ELISA) (ID Screen® West Nile Competition Multi-species ELISA, ID VET, Montpellier, France) and cross-reactivity towards Japanese Encephalitis virus (JEV) was also carried out using the JEV-double antigen sandwich (DAS) ELISA. Oropharyngeal swabs were subjected to one-step RT-PCR to detect WNV RNA, in which positive reactions were subsequently sequenced. WNV seropositive rate of 18.71% (29/155) at 95% CI (0.131 to 0.260) and molecular prevalence of 15.2% (16/105) at 95% CI (0.092 to 0.239) were demonstrated in migratory and resident wild birds found in West Coast Malaysia. Phylogenetic analyses of the 16 WNV isolates found in this study revealed that the local strains have 99% similarity to the strains from South Africa and were clustered under lineage 2. Evidence of WNV infection in resident and migratory birds were demonstrated in this study. As a summary, intervention between migratory birds, resident birds and mosquitoes might cause the introduction and maintenance of WNV in Malaysia, however the assumption could be further proven by studying the infection dynamics in the mosquitoes present in the studied areas.
    Matched MeSH terms: Flavivirus
  4. Khor CS, Mohd-Rahim NF, Hassan H, Tan KK, Zainal N, Teoh BT, et al.
    J Med Virol, 2020 08;92(8):956-962.
    PMID: 31814135 DOI: 10.1002/jmv.25649
    Dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV) are mosquito-borne flavivirus of medical importance in tropical countries such as Malaysia. However, much remains unknown regarding their prevalence among the underserved indigenous people (Orang Asli) living in communities in the forest fringe areas of Peninsular Malaysia. Information on the prevalence of diseases is necessary to elevate the effectiveness of disease control and preventive measures. This study aimed to determine the seroprevalence of the three major flaviviruses among the Orang Asli and investigate the association between demographic factors and seropositivities. Sampling activities were conducted in the Orang Asli villages to obtain serum samples and demographic data from consenting volunteers. The presence of DENV, JEV, and ZIKV immunoglobulin G (IgG) antibodies in the sera were examined using commercial enzyme-linked immunosorbent assay kits. A focus reduction neutralization assay was performed to measure virus-specific neutralizing antibodies. A total of 872 serum samples were obtained from the Orang Asli volunteers. Serological assay results revealed that DENV IgG, JEV IgG, and ZIKV IgG seropositivities among the Orang Asli were at 4.9%, 48.4%, and 13.2%, respectively. Neutralizing antibodies (FRNT50 ≥ 1:40) against JEV and ZIKV were found in 86.7% and 100.0%, respectively, out of the samples tested. Positive serology to all three viruses corresponded significantly to the age of the volunteers with increasing seropositivity in older volunteers. Findings from the study suggest that Orang Asli are at significant risk of contracting JEV and ZIKV infections despite the lack of active transmission of the viruses in the country.
    Matched MeSH terms: Flavivirus/immunology*
  5. Ong NH, Chua CL, Liew JWK, Wan Sulaiman WY, Chan YF, Sam IC, et al.
    Acta Trop, 2020 Aug;208:105472.
    PMID: 32389451 DOI: 10.1016/j.actatropica.2020.105472
    Zika virus (ZIKV) is a mosquito-borne flavivirus with global impact since 2015. Although ZIKV was first isolated from Aedes aegypti in Malaysia in 1965, not much is known about the competency of Malaysian Ae. aegypti to ZIKV. To date only 9 cases of ZIKV have been reported in Malaysia despite the abundance of mosquito vectors. This study aimed to determine the susceptibility of Ae. aegypti to ZIKV, and the impact of sequential infections in Ae. aegypti mosquitoes with DENV serotype 2 (DENV-2) followed by ZIKV. Field-caught urban Ae. aegypti were orally challenged with a Martinique strain of ZIKV, and midgut, head/thorax and saliva were collected at 3, 7 and 14 days post-infection (dpi). At 14 dpi, ZIKV-exposed mosquitoes had infection and dissemination rates of 59% (n=10/17) and 90% (n=9/10), respectively. Average titres of 3.9 and 4.4 log pfu infectious ZIKV were recovered in midgut and head/thorax, respectively. In sequential infection, prior exposure of Ae. aegypti to DENV did not affect the subsequent ZIKV infection in head/thorax albeit with a low sample size. In conclusion, Malaysian urban Ae. aegypti is susceptible to the contemporary Asian lineage of ZIKV. The established and continuous DENV circulation in Ae. aegypti did not suppress ZIKV emergence in Malaysia. Other factors contributing to low level of ZIKV circulation in Malaysia remain to be explored.
    Matched MeSH terms: Flavivirus
  6. Zhang W, Jiang B, Zeng M, Duan Y, Wu Z, Wu Y, et al.
    J Virol, 2020 04 16;94(9).
    PMID: 32075929 DOI: 10.1128/JVI.01850-19
    Duck Tembusu virus (DTMUV), which is similar to other mosquito-borne flaviviruses that replicate well in most mammalian cells, is an emerging pathogenic flavivirus that has caused epidemics in egg-laying and breeding waterfowl. Immune organ defects and neurological dysfunction are the main clinical symptoms of DTMUV infection. Preinfection with DTMUV makes the virus impervious to later interferon (IFN) treatment, revealing that DTMUV has evolved some strategies to defend against host IFN-dependent antiviral responses. Immune inhibition was further confirmed by screening for DTMUV-encoded proteins, which suggested that NS2A significantly inhibited IFN-β and IFN-stimulated response element (ISRE) promoter activity in a dose-dependent manner and facilitated reinfection with duck plague virus (DPV). DTMUV NS2A was able to inhibit duck retinoic acid-inducible gene-I (RIG-I)-, and melanoma differentiation-associated gene 5 (MDA5)-, mitochondrial-localized adaptor molecules (MAVS)-, stimulator of interferon genes (STING)-, and TANK-binding kinase 1 (TBK1)-induced IFN-β transcription, but not duck TBK1- and interferon regulatory factor 7 (IRF7)-mediated effective phases of IFN response. Furthermore, we found that NS2A competed with duTBK1 in binding to duck STING (duSTING), impaired duSTING-duSTING binding, and reduced duTBK1 phosphorylation, leading to the subsequent inhibition of IFN production. Importantly, we first identified that the W164A, Y167A, and S361A mutations in duSTING significantly impaired the NS2A-duSTING interaction, which is important for NS2A-induced IFN-β inhibition. Hence, our data demonstrated that DTMUV NS2A disrupts duSTING-dependent antiviral cellular defenses by binding with duSTING, which provides a novel mechanism by which DTMUV subverts host innate immune responses. The potential interaction sites between NS2A and duSTING may be the targets of future novel antiviral therapies and vaccine development.IMPORTANCE Flavivirus infections are transmitted through mosquitos or ticks and lead to significant morbidity and mortality worldwide with a spectrum of manifestations. Infection with an emerging flavivirus, DTMUV, manifests with clinical symptoms that include lesions of the immune organs and neurological dysfunction, leading to heavy egg drop and causing serious harm to the duck industry in China, Thailand, Malaysia, and other Southeast Asian countries. Mosquito cells, bird cells, and mammalian cell lines are all susceptible to DTMUV infection. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and may pose a threat to mammalian health. However, the pathogenesis of DTMUV is largely unclear. Our results show that NS2A strongly blocks the STING-induced signal transduction cascade by binding with STING, which subsequently blocks STING-STING binding and TBK1 phosphorylation. More importantly, the W164, Y167, or S361 residues in duSTING were identified as important interaction sites between STING and NS2A that are vital for NS2A-induced IFN production and effective phases of IFN response. Uncovering the mechanism by which DTMUV NS2A inhibits IFN in the cells of its natural hosts, ducks, will help us understand the role of NS2A in DTMUV pathogenicity.
    Matched MeSH terms: Flavivirus/metabolism*; Flavivirus/pathogenicity; Flavivirus Infections/virology
  7. Chong HY, Leow CY, Abdul Majeed AB, Leow CH
    Virus Res, 2019 12;274:197770.
    PMID: 31626874 DOI: 10.1016/j.virusres.2019.197770
    Flaviviruses are group of single stranded RNA viruses that cause severe endemic infection and epidemics on a global scale. It presents a significant health impact worldwide and the viruses have the potential to emerge and outbreak in a non-endemic geographical region. Effective vaccines for prophylaxis are only available for several flaviviruses such as Yellow Fever virus, Tick-borne Encephalitis Virus, Dengue Virus and Japanese Encephalitis Virus and there is no antiflaviviral agent being marketed. This review discusses the flavivirus genome, replication cycle, epidemiology, clinical presentation and pathogenesis upon infection. Effective humoral response is critical to confer protective immunity against flaviviruses. Hence, we have also highlighted the immune responses elicited upon infection, various diagnostic facilities available for flaviviral disease and monoclonal antibodies available to date against flavivirus infection.
    Matched MeSH terms: Flavivirus/genetics; Flavivirus/immunology*; Flavivirus/isolation & purification*; Flavivirus/physiology; Flavivirus Infections/diagnosis*; Flavivirus Infections/drug therapy; Flavivirus Infections/immunology*; Flavivirus Infections/pathology
  8. Kumar K, Arshad SS, Toung OP, Abba Y, Selvarajah GT, Abu J, et al.
    Trop Anim Health Prod, 2019 Mar;51(3):495-506.
    PMID: 30604332 DOI: 10.1007/s11250-018-01786-x
    Flaviviruses (FVs) are arthropod-borne viruses of medical and veterinary importance. Numerous species of FVs have been isolated from various host; mainly humans, animals, ticks, and mosquitoes. Certain FVs are extremely host-specific; at the same time, some FVs can infect an extensive range of species. Based on published literatures, 11 species of FVs have been detected from diverse host species in Malaysia. In humans, dengue virus and Japanese encephalitis virus have been reported since 1901 and 1942. In animals, the Batu Cave virus, Sitiawan virus, Carey Island, Tembusu virus, Duck Tembusu virus, and Japanese encephalitis viruses were isolated from various species. In mosquitoes, Japanese encephalitis virus and Kunjin virus were isolated from Culex spp., while Zika virus and Jugra virus were isolated from Aedes spp. In ticks, the Langat virus was isolated from Ixodes spp. One of the major challenges in the diagnosis of FVs is the presence of sero-complexes as a result of cross-reactivity with one or more FV species. Subsequently, the distribution of specific FVs among humans and animals in a specific population is problematic to assess and often require comprehensive and thorough analyses. Molecular assays such as quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and digital droplet RT-PCR (ddRT-PCR) have been used for the differentiation of flavivirus infections to increase the accuracy of epidemiological data for disease surveillance, monitoring, and control. In situations where sero-complexes are common in FVs, even sensitive assays such as qRT-pCR can produce false positive results. In this write up, an overview of the various FV sero-complexes reported in Malaysia to date and the challenges faced in diagnosis of FV infections are presented.
    Matched MeSH terms: Flavivirus Infections
  9. Woon YL, Lim MF, Tg Abd Rashid TR, Thayan R, Chidambaram SK, Syed Abdul Rahim SS, et al.
    BMC Infect Dis, 2019 Feb 13;19(1):152.
    PMID: 30760239 DOI: 10.1186/s12879-019-3786-9
    BACKGROUND: A major outbreak of the Zika virus (ZIKV) has been reported in Brazil in 2015. Since then, it spread further to other countries in the Americas and resulted in declaration of the Public Health Emergency of International Concern (PHEIC) by World Health Organization. In 2016, Singapore reported its first minor ZIKV epidemic. Malaysia shares similar ecological environment as Brazil and Singapore which may also favor ZIKV transmission. However, no ZIKV outbreak has been reported in Malaysia to date. This study aimed to discuss all confirmed ZIKV cases captured under Malaysia ZIKV surveillance system after declaration of the PHEIC; and explore why Malaysia did not suffer a similar ZIKV outbreak as the other two countries.

    METHODS: This was an observational study reviewing all confirmed ZIKV cases detected in Malaysia through the ZIKV clinical surveillance and Flavivirus laboratory surveillance between June 2015 and December 2017. All basic demographic characteristics, co-morbidities, clinical, laboratory and outcome data of the confirmed ZIKV cases were collected from the source documents.

    RESULTS: Only eight out of 4043 cases tested positive for ZIKV infection during that period. The median age of infected patients was 48.6 years and majority was Chinese. Two of the subjects were pregnant. The median interval between the onset of disease and the first detection of ZIKV Ribonucleic Acid (RNA) in body fluid was 3 days. Six cases had ZIKV RNA detected in both serum and urine samples. Phylogenetic analysis suggests that isolates from the 7 cases of ZIKV infection came from two clusters, both of which were local circulating strains.

    CONCLUSION: Despite similar ecological background characteristics, Malaysia was not as affected by the recent ZIKV outbreak compared to Brazil and Singapore. This could be related to pre-existing immunity against ZIKV in this population, which developed after the first introduction of the ZIKV in Malaysia decades ago. A serosurvey to determine the seroprevalence of ZIKV in Malaysia was carried out in 2017. The differences in circulating ZIKV strains could be another reason as to why Malaysia seemed to be protected from an outbreak.

    Matched MeSH terms: Flavivirus
  10. Nealon J, Taurel AF, Yoksan S, Moureau A, Bonaparte M, Quang LC, et al.
    J Infect Dis, 2019 Jan 09;219(3):375-381.
    PMID: 30165664 DOI: 10.1093/infdis/jiy513
    Background: Japanese encephalitis virus (JEV) is a zoonotic, mosquito-borne flavivirus, distributed across Asia. Infections are mostly mild or asymptomatic, but symptoms include neurological disorders, sequelae, and fatalities. Data to inform control strategies are limited due to incomplete case reporting.

    Methods: We used JEV serological data from a multicountry Asian dengue vaccine study in children aged 2-14 years to describe JEV endemicity, measuring antibodies by plaque reduction neutralization test (PRNT50).

    Results: A total 1479 unvaccinated subjects were included. A minimal estimate of pediatric JEV seroprevalence in dengue-naive individuals was 8.1% in Indonesia, 5.8% in Malaysia, 10.8% in the Philippines, and 30.7% in Vietnam, translating to annual infection risks varying from 0.8% (in Malaysia) to 5.2% (in Vietnam). JEV seroprevalence and annual infection estimates were much higher in children with history of dengue infection, indicating cross-neutralization within the JEV PRNT50 assay.

    Conclusions: These data confirm JEV transmission across predominantly urban areas and support a greater emphasis on JEV case finding, diagnosis, and prevention.

    Matched MeSH terms: Flavivirus
  11. Syazwani Hamdan, Mohd Rahman Omar, Mohammad Naqib Hamdan, Ummu Aiman Faisal
    MyJurnal
    Introduction: Zika virus infection is caused by flavivirus virus and spread by Aedes mosquitoes. Since first report-ed in 1947, it spread to various countries especially in the equatorial region including Malaysia. The infection is non-fatal to an adult. However, the major risk of its infection is towards unborn baby when the mother is infected. The vertical transmission to the foetus possess various risks include the teratogenic effect that may lead to elective abortion. Thus, the objectives of this review are to discover about Zika virus and its effect on pregnant women and to evaluate Islamic perspective about elective abortion of Zika virus-infected women. Methods: This review was done through reviewing evidence from the journals, books and reports. The data were reviewed thematically according to the objectives. Results: Studies shown that Zika virus may cause miscarriage, preterm birth, microcephaly and other malformation known as Congenital Zika syndrome. This leads to a demand for elective abortion which raised Islamic ethical issue if it is permissible. In Islam, abortion is extremely prohibited once the foetus reached 120-day of con-ception unless it causes harm to the mother’s life. But, if the foetus age is less than 120-day, abortion is permissible when the pregnancy affects the mother’s health. Abortion due to foetal microcephaly and congenital malformation is prohibited. Conclusion: Effort must be taken to prevent the spread of Zika virus to reduce the need for an elective abortion through an education Muslim community regarding elective abortion.
    Matched MeSH terms: Flavivirus
  12. Chin Mun Wong, Rozita Hod, Mohd Rohaizat Hassan, Sazaly Abu Bakar
    MyJurnal
    Introduction: Zika infection was declared as Public Health Emergency of International Concern since year 2015. Despite of no new reported case via National Surveillance System for flavivirus, an underestimated seroprevalence might occur as the country contributes to the Asian lineage of the virus. Methods: Systematic literature search using PICO framework and PRISMA checklist across four databases for articles published from year 2013-2018 yielded 189 results, 37 articles accepted by titles following criteria were subjected to abstract screening, leaving 8 articles with clear risk proceed to full text analysis using Cochrane checklist and GRADE assessment. Results: There were four high quality articles and four low quality articles based on biases in studies. Blood product management and vac-cination are strategies strongly recommended to be implemented as Zika response while vector control and family planning are public health measures to be proposed as policy if feasible. Successful factors to improve Zika surveil-lance and management includes developing algorithm for blood product management, anti-Zika vaccine research, algorithm for new-born screening, participation of policy makers, healthcare capacity building, raising healthcare and public awareness on the infection, international funding, utilization of technology in data management and bio-logical control of vector. Conclusion: Implementation of Zika response as policy is timely, should be evidence-based and follow guidelines from WHO / CDC / FDA US after cost-effectiveness evaluation for Malaysia setting.
    Matched MeSH terms: Flavivirus
  13. Ninvilai P, Nonthabenjawan N, Limcharoen B, Tunterak W, Oraveerakul K, Banlunara W, et al.
    Transbound Emerg Dis, 2018 Oct;65(5):1208-1216.
    PMID: 29520997 DOI: 10.1111/tbed.12859
    Duck Tembusu virus (DTMUV), a newly emerging virus in ducks, was first reported in China in 2010. However, an unknown severe contagious disease associated with severe neurological signs and egg production losses in ducks, resembling to DTMUV infection, was observed in Thailand since 2007. To determine the presence of DTMUV in 2007, the clinical samples from affected ducks collected in 2007 were tested for DTMUV using pathological and virological analyses. Gross and histopathological lesions of affected ducks were mostly restricted to the ovary, brain and spinal cord, and correlated with the presence of flavivirus antigen in the brain and spinal cord samples. Subsequently, DTMUV was identified by RT-PCR and nucleotide sequencing of the polyprotein gene. Phylogenetic analysis of the polyprotein gene sequence revealed that the 2007 Thai DTMUV was a unique virus, belonged within DTMUV cluster 1, but distinctively separated from the Malaysian DTMUV, which was the most closely related DTMUV. It is interesting to note that the 2007 Thai DTMUV was genetically different from the currently circulating Thai and Chinese DTMUVs, which belonged to cluster 2. Our findings indicated that the 2007 Thai DTMUV emerged earlier from a common ancestor with the recently reported DTMUVs; however, it was genetically distinctive to any of the currently circulating DTMUVs. In conclusion, our data demonstrated the presence of DTMUV in the Thai ducks since 2007, prior to the first report of DTMUV in China in 2010. This study indicates that DTMUV may have circulated in the region long before 2010 and highlights high genetic diversity of DTMUVs in Asia.
    Matched MeSH terms: Flavivirus/genetics; Flavivirus/isolation & purification*; Flavivirus Infections/epidemiology; Flavivirus Infections/veterinary*; Flavivirus Infections/virology
  14. Guzman H, Contreras-Gutierrez MA, Travassos da Rosa APA, Nunes MRT, Cardoso JF, Popov VL, et al.
    Am J Trop Med Hyg, 2018 02;98(2):410-419.
    PMID: 29016330 DOI: 10.4269/ajtmh.17-0350
    Three novel insect-specific flaviviruses, isolated from mosquitoes collected in Peru, Malaysia (Sarawak), and the United States, are characterized. The new viruses, designated La Tina, Kampung Karu, and Long Pine Key, respectively, are antigenically and phylogenetically more similar to the mosquito-borne flavivirus pathogens, than to the classical insect-specific viruses like cell fusing agent and Culex flavivirus. The potential implications of this relationship and the possible uses of these and other arbovirus-related insect-specific flaviviruses are reviewed.
    Matched MeSH terms: Flavivirus/genetics; Flavivirus/pathogenicity
  15. Netto, Marcus
    MyJurnal
    Dengue fever and its fatal complications have made a comeback since its control in the 1990’s. The Flavivirus has evolved into 4 serotypes DEN 1,2,3,4 which can be passed on by the mosquitoes for 7 generations for each serotype. This communicable disease is predominantly confined to urban areas. Quick control of the spread of the disease will prevent it from becoming an epidemic. The two species mosquitoes involved have different behaviours. The Aedes aegypti is an indoor vector which breeds in clean, clear and calm freshwater. The Aedes albopictus is an outdoor breeding mosquito which breeds in stagnant waters. Surveillance of the areas prone to outbreaks is vital. One of the roles of the entomologist is to monitor the vector for resistance to the insecticides. Localities that have been subjected to recurrent outbreaks will have vector which develop resistance to the insecticides used.
    Matched MeSH terms: Flavivirus
  16. Zhang W, Chen S, Mahalingam S, Wang M, Cheng A
    J Gen Virol, 2017 Oct;98(10):2413-2420.
    PMID: 28874226 DOI: 10.1099/jgv.0.000908
    Tembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People's Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.
    Matched MeSH terms: Flavivirus/genetics*; Flavivirus/immunology; Flavivirus/isolation & purification; Flavivirus Infections/transmission*; Flavivirus Infections/veterinary*; Flavivirus Infections/virology
  17. Tan CW, Sam IC, Chong WL, Lee VS, Chan YF
    Antiviral Res, 2017 07;143:186-194.
    PMID: 28457855 DOI: 10.1016/j.antiviral.2017.04.017
    Zika virus (ZIKV) is an arthropod-borne flavivirus that causes newborn microcephaly and Guillian-Barré syndrome in adults. No therapeutics are available to treat ZIKV infection or other flaviviruses. In this study, we explored the inhibitory effect of glycosaminoglycans and analogues against ZIKV infection. Highly sulfated heparin, dextran sulfate and suramin significantly inhibited ZIKV infection in Vero cells. De-sulfated heparin analogues lose inhibitory effect, implying that sulfonate groups are critical for viral inhibition. Suramin, an FDA-approved anti-parasitic drug, inhibits ZIKV infection with 3-5 log10 PFU viral reduction with IC50value of ∼2.5-5 μg/ml (1.93 μM-3.85 μM). A time-of-drug-addition study revealed that suramin remains potent even when administrated at 1-24 hpi. Suramin inhibits ZIKV infection by preventing viral adsorption, entry and replication. Molecular dynamics simulation revealed stronger interaction of suramin with ZIKV NS3 helicase than with the envelope protein. Suramin warrants further investigation as a potential antiviral candidate for ZIKV infection. Heparan sulfate (HS) is a cellular attachment receptor for multiple flaviviruses. However, no direct ZIKV-heparin interaction was observed in heparin-binding analysis, and downregulate or removal of cellular HS with sodium chlorate or heparinase I/III did not inhibit ZIKV infection. This indicates that cell surface HS is not utilized by ZIKV as an attachment receptor.
    Matched MeSH terms: Flavivirus/drug effects
  18. Lei W, Guo X, Fu S, Feng Y, Tao X, Gao X, et al.
    Vet Microbiol, 2017 Mar;201:32-41.
    PMID: 28284620 DOI: 10.1016/j.vetmic.2017.01.003
    BACKGROUND: Since the turn of the 21st century, there have been several epidemic outbreaks of poultry diseases caused by Tembusu virus (TMUV). Although multiple mosquito and poultry-derived strains of TMUV have been isolated, no data exist about their comparative study, origin, evolution, and dissemination.

    METHODOLOGY: Parallel virology was used to investigate the phenotypes of duck and mosquito-derived isolates of TMUV. Molecular biology and bioinformatics methods were employed to investigate the genetic characteristics and evolution of TMUV.

    PRINCIPAL FINDINGS: The plaque diameter of duck-derived isolates of TMUV was larger than that of mosquito-derived isolates. The cytopathic effect (CPE) in mammalian cells occurred more rapidly induced by duck-derived isolates than by mosquito-derived isolates. Furthermore, duck-derived isolates required less time to reach maximum titer, and exhibited higher viral titer. These findings suggested that poultry-derived TMUV isolates were more invasive and had greater expansion capability than the mosquito-derived isolates in mammalian cells. Variations in amino acid loci in TMUV E gene sequence revealed two mutated amino acid loci in strains isolated from Malaysia, Thailand, and Chinese mainland compared with the prototypical strain of the virus (MM1775). Furthermore, TMUV isolates from the Chinese mainland had six common variations in the E gene loci that differed from the Southeast Asian strains. Phylogenetic analysis indicated that TMUV did not exhibit a species barrier in avian species and consisted of two lineages: the Southeast Asian and the Chinese mainland lineages. Molecular traceability studies revealed that the recent common evolutionary ancestor of TMUV might have appeared before 1934 and that Malaysia, Thailand and Shandong Province of China represent the three main sources related to TMUV spread.

    CONCLUSIONS: The current broad distribution of TMUV strains in Southeast Asia and Chinese mainland exhibited longer-range diffusion and larger-scale propagation. Therefore, in addition to China, other Asian and European countries linked to Asia have used improved measures to detect and monitor TMUV related diseases to prevent epidemics in poultry.

    Matched MeSH terms: Flavivirus/genetics*; Flavivirus/isolation & purification; Flavivirus/physiology; Flavivirus Infections/transmission; Flavivirus Infections/veterinary*; Flavivirus Infections/virology
  19. Li C, Liu J, Shaozhou W, Bai X, Zhang Q, Hua R, et al.
    Viruses, 2016 Nov 10;8(11).
    PMID: 27834908
    Duck Tembusu virus (DTMUV) causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs) 1F3 and 1A5. Two minimal epitopes were mapped to (221)LD/NLPW(225) and (87)YAEYI(91) by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas (221)LD/NLPW(225) was a cross-reactive epitope for West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D) II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.
    Matched MeSH terms: Flavivirus/immunology*; Flavivirus Infections/diagnosis; Flavivirus Infections/veterinary*
  20. Foo KY, Chee HY
    Biomed Res Int, 2015;2015:427814.
    PMID: 26347881 DOI: 10.1155/2015/427814
    Flaviviruses are potentially human pathogens that cause major epidemics worldwide. Flavivirus interacts with host cell factors to form a favourable virus replication site. Cell cytoskeletons have been observed to have close contact with flaviviruses, which expands the understanding of cytoskeleton functions during virus replication, although many detailed mechanisms are still unclear. The interactions between the virus and host cytoskeletons such as actin filaments, microtubules, and intermediate filaments have provided insight into molecular alterations during the virus infection, such as viral entry, in-cell transport, scaffold assembly, and egress. This review article focuses on the utilization of cytoskeleton by Flavivirus and the respective functions during virus replication.
    Matched MeSH terms: Flavivirus/physiology*; Flavivirus Infections/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links