Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Abdul-Manan AF, Baharuddin A, Chang LW
    Eval Program Plann, 2015 Oct;52:39-49.
    PMID: 25898073 DOI: 10.1016/j.evalprogplan.2015.03.007
    Theory-based evaluation (TBE) is an effectiveness assessment technique that critically analyses the theory underlying an intervention. Whilst its use has been widely reported in the area of social programmes, it is less applied in the field of energy and climate change policy evaluations. This paper reports a recent study that has evaluated the effectiveness of the national biofuel policy (NBP) for the transport sector in Malaysia by adapting a TBE approach. Three evaluation criteria were derived from the official goals of the NBP, those are (i) improve sustainability and environmental friendliness, (ii) reduce fossil fuel dependency, and (iii) enhance stakeholders' welfare. The policy theory underlying the NBP has been reconstructed through critical examination of the policy and regulatory documents followed by a rigorous appraisal of the causal link within the policy theory through the application of scientific knowledge. This study has identified several weaknesses in the policy framework that may engender the policy to be ineffective. Experiences with the use of a TBE approach for policy evaluations are also shared in this report.
    Matched MeSH terms: Fossil Fuels/adverse effects*; Fossil Fuels/economics; Fossil Fuels/standards
  2. Ahmad Sobri MZ, Khoo KS, Sahrin NT, Ardo FM, Ansar S, Hossain MS, et al.
    Chemosphere, 2023 Oct;338:139526.
    PMID: 37459926 DOI: 10.1016/j.chemosphere.2023.139526
    The depletion of fossil fuel sources and increase in energy demands have increased the need for a sustainable alternative energy source. The ability to produce hydrogen from microalgae is generating a lot of attention in both academia and industry. Due to complex production procedures, the commercial production of microalgal biohydrogen is not yet practical. Developing the most optimum microalgal hydrogen production process is also very laborious and expensive as proven from the experimental measurement. Therefore, this research project intended to analyse the random time series dataset collected during microalgal hydrogen productions while using various low thermally pre-treated palm kernel expeller (PKE) waste via machine learning (ML) approach. The analysis of collected dataset allowed the derivation of an enhanced kinetic model based on the Gompertz model amidst the dark fermentative hydrogen production that integrated thermal pre-treatment duration as a function within the model. The optimum microalgal hydrogen production attained with the enhanced kinetic model was 387.1 mL/g microalgae after 6 days with 1 h thermally pre-treated PKE waste at 90 °C. The enhanced model also had better accuracy (R2 = 0.9556) and net energy ratio (NER) value (0.71) than previous studies. Finally, the NER could be further improved to 0.91 when the microalgal culture was reused, heralding the potential application of ML in optimizing the microalgal hydrogen production process.
    Matched MeSH terms: Fossil Fuels
  3. Al-Saari N, Amada E, Matsumura Y, Tanaka M, Mino S, Sawabe T
    PeerJ, 2019;7:e6769.
    PMID: 31024772 DOI: 10.7717/peerj.6769
    Biohydrogen is one of the most suitable clean energy sources for sustaining a fossil fuel independent society. The use of both land and ocean bioresources as feedstocks show great potential in maximizing biohydrogen production, but sodium ion is one of the main obstacles in efficient bacterial biohydrogen production. Vibrio tritonius strain AM2 can perform efficient hydrogen production with a molar yield of 1.7 mol H2/mol mannitol, which corresponds to 85% theoretical molar yield of H2 production, under saline conditions. With a view to maximizing the hydrogen production using marine biomass, it is important to accumulate knowledge on the effects of salts on the hydrogen production kinetics. Here, we show the kinetics in batch hydrogen production of V. tritonius strain AM2 to investigate the response to various NaCl concentrations. The modified Han-Levenspiel model reveals that salt inhibition in hydrogen production using V. tritonius starts precisely at the point where 10.2 g/L of NaCl is added, and is critically inhibited at 46 g/L. NaCl concentration greatly affects the substrate consumption which in turn affects both growth and hydrogen production. The NaCl-dependent behavior of fermentative hydrogen production of V. tritonius compared to that of Escherichia coli JCM 1649 reveals the marine-adapted fermentative hydrogen production system in V. tritonius. V. tritonius AM2 is capable of producing hydrogen from seaweed carbohydrate under a wide range of NaCl concentrations (5 to 46 g/L). The optimal salt concentration producing the highest levels of hydrogen, optimal substrate consumption and highest molar hydrogen yield is at 10 g/L NaCl (1.0% (w/v)).
    Matched MeSH terms: Fossil Fuels
  4. Alam A, Azam M, Abdullah AB, Malik IA, Khan A, Hamzah TA, et al.
    Environ Sci Pollut Res Int, 2015 Jun;22(11):8392-404.
    PMID: 25537287 DOI: 10.1007/s11356-014-3982-5
    Environmental quality indicators are crucial for responsive and cost-effective policies. The objective of the study is to examine the relationship between environmental quality indicators and financial development in Malaysia. For this purpose, the number of environmental quality indicators has been used, i.e., air pollution measured by carbon dioxide emissions, population density per square kilometer of land area, agricultural production measured by cereal production and livestock production, and energy resources considered by energy use and fossil fuel energy consumption, which placed an impact on the financial development of the country. The study used four main financial indicators, i.e., broad money supply (M2), domestic credit provided by the financial sector (DCFS), domestic credit to the private sector (DCPC), and inflation (CPI), which each financial indicator separately estimated with the environmental quality indicators, over a period of 1975-2013. The study used the generalized method of moments (GMM) technique to minimize the simultaneity from the model. The results show that carbon dioxide emissions exert the positive correlation with the M2, DCFC, and DCPC, while there is a negative correlation with the CPI. However, these results have been evaporated from the GMM estimates, where carbon emissions have no significant relationship with any of the four financial indicators in Malaysia. The GMM results show that population density has a negative relationship with the all four financial indicators; however, in case of M2, this relationship is insignificant to explain their result. Cereal production has a positive relationship with the DCPC, while there is a negative relationship with the CPI. Livestock production exerts the positive relationship with the all four financial indicators; however, this relationship with the CPI has a more elastic relationship, while the remaining relationship is less elastic with the three financial indicators in a country. Energy resources comprise energy use and fossil fuel energy consumption, both have distinct results with the financial indicators, as energy demand have a positive and significant relationship with the DCFC, DCPC, and CPI, while fossil fuel energy consumption have a negative relationship with these three financial indicators. The results of the study are of value to both environmentalists and policy makers.
    Matched MeSH terms: Fossil Fuels
  5. Alsaleh M, Abdul-Rahim AS, Abdulwakil MM
    J Environ Manage, 2021 Sep 15;294:112960.
    PMID: 34116310 DOI: 10.1016/j.jenvman.2021.112960
    This study examined the impact of worldwide governance indicators on the sustainability of the bioenergy industry in selected European countries for the period 1996-2018. Applying the Fixed Effect (FE) Model, the results reveal that the bioenergy industry can significantly grow by improving the quality of worldwide governance indicators in European countries, especially in Western European Countries (WEC). Government effectiveness, rule of law, regulatory quality, and voice and accountability are found to be increasing the growth of the bioenergy industry. Precisely, the results further show that the magnitude of the effect of government effectiveness, voice and accountability, and Gross Domestic Product (GDP) on bioenergy output is higher in Western European Countries (WEC) as compared to the Central and Eastern European Countries (CEEC). Also, the findings further elaborate that the significant positive impact of regulatory quality and rule of law on bioenergy output is higher in CEEC countries compared to the WEC countries. The finding implies that the growth of the bioenergy industry in European countries can be effectively increased by improving the practice and quality of worldwide governance indicators. The study recommends for European countries to increase the efficiency of worldwide governance in their bioenergy industry to increase the sustainability of bioenergy production and reduce Dioxide Carbon (CO2) emissions. Policymakers in these countries should also invest more in worldwide governance to increase its effectiveness and transparency in the bioenergy industry. The authorities should equally emphasize the effectiveness and transparency of worldwide governance indicators to attain bioenergy security and lessen the dependence on fossil fuels.
    Matched MeSH terms: Fossil Fuels*
  6. Alsaleh M, Abdul-Rahim AS, Abdulwakil MM
    PMID: 33141381 DOI: 10.1007/s11356-020-11425-4
    Water is an essential component of agriculture-food production. As the biomass and biofuel are known excellent sources of renewable and sustainable energy, cultivating process consumes significant quantities of water. Without sufficient, good-quality and easily accessible water, the European agriculture-food production could thus be under threat. This research analyses the impact of the water supply on the bioenergy production in the 28 European Union countries, for the 1990-2018 period within the pathway of the European Union 2030 agenda for sustainable development. The findings using the generalised least squares (GLS) technique show that bioenergy production and population density appear to decrease water supply. Precisely, the magnitude of the effects is - 0.224 and - 0.136 for developing countries and developed countries in the EU, respectively. This indicates that a serious reduction of water security is more likely to happen in developed countries than in developing countries as a result of the increase in bioenergy consumption. In the meantime, fossil fuel, income generation activities and institutional quality have already positively affected water supply. Thus, these findings implied that water scarcity is becoming one of the main obstacles for bioenergy expansion and growth. The results were also further verified by the random effect and pooled oriented least squares method. This study recommends that the Member of the European Union States should continue to increase bioenergy production in the energy mix efforts without any strenuous water security issues. Notwithstanding, there are several situations where a developing bioenergy industry is unlikely to be constrained by water shortage, and with the drive of bioenergy demand, the efforts might unlock new opportunities to adapt to water-related challenges and to improve water usage efficiencies. The authorities should illustrate organised water security and sustainable bioenergy policy by way of developing alternative strategies in reducing fossil fuel power and related CO2 emissions, accordingly to the unique characteristics of both developed and developing countries in the EU.
    Matched MeSH terms: Fossil Fuels
  7. Alsaleh M, Abdul-Rahim AS
    Environ Sci Pollut Res Int, 2023 Feb;30(9):24654-24671.
    PMID: 36346515 DOI: 10.1007/s11356-022-23769-0
    There are many advantages of geothermal energy, as an environmental friend resource. This heat radiation emanating from beneath the earth's surface presents man with good opportunities to harness it and makes a good level of agricultural food production and its processing in the EU region. The primary objective of this research is to examine the impact of geothermal energy on agri-food supply among the 27 European countries (EU27), within the time frame 1990 to 2021. The study adopted the autoregressive distributed lag (ARDL), and the findings from this study revealed that agri-food supply can increase significantly among the 13 European countries (EU13 emerging economies), leveraging on geothermal energy and economic growth variables than in the EU14 emerged economies. Furthermore, the outcome of this study showed that there could be a significant decrease in the food products coming from agricultural practices among the 13 European countries (EU13 emerging economies), due to an ineffective population density than in EU14 emerged economies. Furthermore, fossil fuel and institutional quality contribute more positively to the agri-food supply in the EU14 emerged economies than in the EU13 emerging economies. This results in an outcome that means that the agri-food supply among the EU13 emerging economies could be greatly boosted by replacing fossil fuel consumption with geothermal energy, and this facilitates the attainment of the European energy goals by the year 2030. Substituting fossil fuels with geothermal will also assist in minimizing the risks of environmental pollution and climate change. All projected calculations were seen as valid in this study, and this was confirmed by the three estimators adopted which are the pooled mean group, the mean group, and the dynamic fixed effect. This study, therefore, recommends that the 27 European countries should lay more emphasis on geothermal energy production as this will help in ensuring food security in the region. Policymakers and other government authorities as well as local and foreign investors should make more investments in geothermal energy resources as this study has proven that this will lead to agri-food security and sustainability. Not only this, it will as well curb the incidence of climate change and environmental pollution.
    Matched MeSH terms: Fossil Fuels/analysis
  8. Alsaleh M, Abdul-Rahim AS
    Environ Sci Pollut Res Int, 2023 Jan;30(5):12825-12843.
    PMID: 36114960 DOI: 10.1007/s11356-022-22583-y
    There are many advantages of the hydropower industry, as an environmentally friendly resource, and also some challenges that need to be overcome to fully exploit this sustainable and renewable natural resource. The primary objective of this study is to find out the impact of hydropower factors and economic growth on the agriculture industry output among the EU27 nations within the time factor 1990 to 2021. Adopting the autoregressive distributed lag (ARDL), the findings show a significant positive effect could occur in agriculture industry growth of the European Union (EU13)-emerging economies using hydropower factors than in EU14-emerged economies. On one hand, among additional factors, economic growth and institutional quality contribute more positively to agriculture growth in EU13 economies than in EU14 economies. On the other hand, population density contributes more negatively to agriculture growth in EU13 economies than in EU14 economies. The findings show there can be a positive significant growth increase in the EU13 agriculture industry using fossil fuel output than in EU14 economies. The results show that growth could be sustained in the agricultural industry of the European nations by increasing the level of hydropower production as this will help in attaining sustainable development by the year 2030. This will therefore help in mitigating the effect of climatic changes due to environmental pollution. The projected calculations were seen to be reliable and valid and this was attested to by the three estimators used in the study (pooled mean group, mean group, and dynamic fixed effect). This study recommended that European nations could leverage hydroelectricity to achieve sustainable growth and development. The legislative arms of the government of these European nations should as well show more interest in green energy to achieve security and sustainable development in hydroelectricity production. Decision-makers in the EU nations should buttress more emphasis on sustainable means through which hydropower could be used to attain sustainable irrigation systems for the agriculture industry and thus minimize the demand for fossil fuels and reduce CO2-related emissions in the future tine ahead.
    Matched MeSH terms: Fossil Fuels
  9. Alsaleh M, Chen T, Abdul-Rahim AS
    Environ Technol, 2024 Mar;45(7):1271-1289.
    PMID: 36305514 DOI: 10.1080/09593330.2022.2141662
    This study's main goal is to evaluate how the research will look at the impact of geothermal energy production on the quality of the subterranean in the 27 European nations from 1990 to 2021. A considerable decline in the subterranean water supply can occur in EU14 emerging nations employing geothermal energy growth compared to EU13 emerging economies, according to research that uses the autoregressive distributed lag (ARDL). Fossil fuel use, population growth, and economic expansion are some factors that have a more detrimental effect on the subterranean water supply in EU14 emerging economies than in EU13 emerging nations. In contrast, the study's findings indicate that EU13 emerging nations may be better able to enhance their underground water supply than EU14 emerging economies because of more effective institutional qualities. The findings so indicate that increasing the amount of geothermal energy generation among the 27 European Union countries can accelerate subsurface water degradation at a high capacity and help achieve unionism's 2030 energy-related goals. When this is achieved, climate change will be put to check, as pollution of the environment. All calculations projected were seen to be of a good level of validity, and this is ascertained through three estimators considered in this study.
    Matched MeSH terms: Fossil Fuels
  10. Bello MO, Solarin SA, Yen YY
    Environ Sci Pollut Res Int, 2020 May;27(14):17162-17174.
    PMID: 32146676 DOI: 10.1007/s11356-020-08251-z
    The main objective of this paper is to estimate the interfuel substitution elasticities between hydropower and the fossil fuels of coal and natural gas used in the generation of electricity for Malaysia. Due to the violation of the assumption behind the ordinary least squares (OLS) method on account of the correlated error terms in the system of equations, the econometrics techniques of seemingly unrelated regression (SUR) was adopted to obtain the parameter estimates using dataset that covers the period 1988 to 2016. The main finding is that there exists substantial substitution possibility between hydropower and fossil fuels in the generation of electricity for Malaysia. CO2 emissions mitigation scenarios were also conducted to explore the possible effects of substituting fossil fuels for hydropower to generate electricity. The results show that switching from high carbon-emitting fuels to renewable energy such as hydropower will substantially reduce CO2 emission and assist the country towards achieving the carbon emissions reduction targets. Policy recommendations are offered in the body of the manuscript.
    Matched MeSH terms: Fossil Fuels*
  11. Chaudhry IS, Yusop Z, Habibullah MS
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5360-5377.
    PMID: 34417974 DOI: 10.1007/s11356-021-15941-9
    The disastrous consequences of climate change for human life and environmental sustainability have drawn worldwide attention. Increased global warming is attributed to anthropogenic greenhouse gas (GHG) emissions, biodiversity loss, and deforestation due to industrial output and huge consumption of fossil fuels. Financial inclusion can be acted as an adaptation or a mitigation measure for environmental degradation. This study analyzed the impact of financial inclusion on environmental degradation in OIC countries for the period 2004-2018. A novel approach, "Dynamic Common Correlated Effects (DCCE)" is used to tackle the problem of heterogeneity and cross-sectional dependence (CSD). Various GHG emissions along with deforestation and ecological footprint are used as indicators of environmental degradation. Long-run estimation confirms that financial inclusion is positively and significantly linked with CO2 emission, CH4 emission, and deforestation while negatively correlated with ecological footprint and N2O emission in overall and higher-income OIC economies. An inverted U-shaped environmental Kuznets curve (EKC) is validated when ecological footprint, CO2, and CH4 are used in all panels of OIC countries. An inverted U-shaped EKC is also observed for deforestation in lower-income and overall OIC countries. In the case of N2O emission, however, a U-shaped EKC appears in lower-income and overall OIC countries. It is suggested that the governments of OIC countries should continue to have easy access to financial services and maintain sustainable use of forests and biocapacity management to address environmental challenges.
    Matched MeSH terms: Fossil Fuels
  12. Chew KW, Chia SR, Chia WY, Cheah WY, Munawaroh HSH, Ong WJ
    Environ Pollut, 2021 Mar 01;278:116836.
    PMID: 33689952 DOI: 10.1016/j.envpol.2021.116836
    The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
    Matched MeSH terms: Fossil Fuels
  13. Culaba AB, Mayol AP, San Juan JLG, Ubando AT, Bandala AA, Concepcion Ii RS, et al.
    Bioresour Technol, 2023 Feb;369:128256.
    PMID: 36343780 DOI: 10.1016/j.biortech.2022.128256
    The increase in worldwide demand for energy is driven by the rapid increase in population and exponential economic development. This resulted in the fast depletion of fossil fuel supplies and unprecedented levels of greenhouse gas in the atmosphere. To valorize biomass into different bioproducts, one of the popular and carbon-neutral alternatives is biorefineries. This system is an appropriate technology in the circular economy model. Various research highlighted the role of biorefineries as a centerpiece in the carbon-neutral ecosystem of technologies of the circular economy model. To fully realize this, various improvements and challenges need to be addressed. This paper presents a critical and timely review of the challenges and future direction of biorefineries as an alternative carbon-neutral energy source.
    Matched MeSH terms: Fossil Fuels
  14. Dai J, Alvarado R, Ali S, Ahmed Z, Meo MS
    Environ Sci Pollut Res Int, 2023 Mar;30(14):40094-40106.
    PMID: 36607580 DOI: 10.1007/s11356-022-25100-3
    Attaining Sustainable Development Goals (SDGs) is important to control the adverse impacts of climate change and achieve sustainable development. Among the 17 SDGs, target 13 emphasizes enhancing urgent actions to combat climate-related changes. This target is also dependent on target 7, which advocates enhancing access to cheap alternative sustainable energy. To accomplish these targets, it is vital to curb the transport CO2 emissions (TCO2) which increased by approximately 80% from 1990 to 2019. Thus, this study assesses the role of transport renewable energy consumption (TRN) in TCO2 by taking into consideration transport fossil fuel consumption (TTF) and road infrastructure (RF) from 1970 to 2019 for the United States (US) with the intention to suggest some suitable mitigation policies. Also, this study assessed the presence of transport environmental Kuznets curve (EKC) to assess the direction of transport-induced growth. The study used the Bayer-Hanck cointegration test which utilizes four different cointegration techniques to decide cointegration along with the Gradual Shift causality test which considers structural shift and fractional integration in time series data. The long-run findings of the Dynamic Ordinary Least Squares (DOLS) test, which counters endogeneity and serial correlation, revealed that the transport renewable energy use mitigates as well as Granger causes TCO2. However, transport fossil fuel usage and road infrastructure enhance TCO2. Surprisingly, the transport EKC is invalid in the case of the US, and increased growth levels are harmful to the environment. The association between TCO2 and economic growth is similar to a U-shaped curve. The Spectral Causality test revealed the growth hypothesis regarding transport fossil fuel use and economic growth connection, which suggests that policymakers should be cautious while decreasing the usage of transport fossil fuels because it may hamper economic progress. These findings call for revisiting growth strategies and increasing green energy utilization in the transport sector to mitigate transport emissions.
    Matched MeSH terms: Fossil Fuels
  15. Das L, Habib K, Saidur R, Aslfattahi N, Yahya SM, Rubbi F
    Nanomaterials (Basel), 2020 Jul 14;10(7).
    PMID: 32674465 DOI: 10.3390/nano10071372
    In recent years, solar energy technologies have developed an emerging edge. The incessant research to develop a power source alternative to fossil fuel because of its scarcity and detrimental effects on the environment is the main driving force. In addition, nanofluids have gained immense interest as superior heat transfer fluid in solar technologies for the last decades. In this research, a binary solution of ionic liquid (IL) + water based ionanofluids is formulated successfully with two dimensional MXene (Ti3C2) nano additives at three distinct concentrations of 0.05, 0.10, and 0.20 wt % and the optimum concentration is used to check the performance of a hybrid solar PV/T system. The layered structure of MXene and high absorbance of prepared nanofluids have been perceived by SEM and UV-vis respectively. Rheometer and DSC are used to assess the viscosity and heat capacity respectively while transient hot wire technique is engaged for thermal conductivity measurement. A maximum improvement of 47% in thermal conductivity is observed for 0.20 wt % loading of MXene. Furthermore, the viscosity is found to rise insignificantly with addition of Ti3C2 by different concentrations. Conversely, viscosity decreases substantially as the temperature increases from 20 °C to 60 °C. However, based on their thermophysical properties, 0.20 wt % is found to be the optimum concentration. A comparative analysis in terms of heat transfer performance with three different nanofluids in PV/T system shows that, IL+ water/MXene ionanofluid exhibits highest thermal, electrical, and overall heat transfer efficiency compared to water/alumina, palm oil/MXene, and water alone. Maximum electrical efficiency and thermal efficiency are recorded as 13.95% and 81.15% respectively using IL + water/MXene, besides that, heat transfer coefficients are also noticed to increase by 12.6% and 2% when compared to water/alumina and palm oil/MXene respectively. In conclusion, it can be demonstrated that MXene dispersed ionanofluid might be great a prospect in the field of heat transfer applications since they can augment the heat transfer rate considerably which improves system efficiency.
    Matched MeSH terms: Fossil Fuels
  16. Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT
    Sci Total Environ, 2019 Oct 20;688:112-128.
    PMID: 31229809 DOI: 10.1016/j.scitotenv.2019.06.181
    The rapid depletion of fossil fuels and ever-increasing environmental pollution have forced humankind to look for a renewable energy source. Microalgae, a renewable biomass source, has been proposed as a promising feedstock to generate biofuels due to their fast growth rate with high lipid content. However, literatures have indicated that sustainable production of microalgae biofuels are only viable with a highly optimized production system. In the present study, a cradle-to-gate approach was used to provide expedient insights on the effect of different cultivation systems and biomass productivity toward life cycle energy (LCEA), carbon balance (LCCO2) and economic (LCC) of microalgae biodiesel production pathways. In addition, a co-production of bioethanol from microalgae residue was proposed in order to improve the economic sustainability of the overall system. The results attained in the present work indicated that traditional microalgae biofuels processing pathways resulted to several shortcomings, such as dehydration and lipid extraction of microalgae biomass required high energy input and contributed nearly 21 to 30% and 39 to 57% of the total energy requirement, respectively. Besides, the microalgae biofuels production system also required a high capital investment, which accounted for 47 to 86% of total production costs that subsequently resulted to poor techno-economic performances. Moreover, current analysis of environmental aspects of microalgae biorefinery had revealed negative CO2 balance in producing microalgae biofuels.
    Matched MeSH terms: Fossil Fuels
  17. Diyana ZN, Jumaidin R, Selamat MZ, Ghazali I, Julmohammad N, Huda N, et al.
    Polymers (Basel), 2021 Apr 26;13(9).
    PMID: 33925897 DOI: 10.3390/polym13091396
    Thermoplastic starch composites have attracted significant attention due to the rise of environmental pollutions induced by the use of synthetic petroleum-based polymer materials. The degradation of traditional plastics requires an unusually long time, which may lead to high cost and secondary pollution. To solve these difficulties, more petroleum-based plastics should be substituted with sustainable bio-based plastics. Renewable and natural materials that are abundant in nature are potential candidates for a wide range of polymers, which can be used to replace their synthetic counterparts. This paper focuses on some aspects of biopolymers and their classes, providing a description of starch as a main component of biopolymers, composites, and potential applications of thermoplastics starch-based in packaging application. Currently, biopolymer composites blended with other components have exhibited several enhanced qualities. The same behavior is also observed when natural fibre is incorporated with biopolymers. However, it should be noted that the degree of compatibility between starch and other biopolymers extensively varies depending on the specific biopolymer. Although their efficacy is yet to reach the level of their fossil fuel counterparts, biopolymers have made a distinguishing mark, which will continue to inspire the creation of novel substances for many years to come.
    Matched MeSH terms: Fossil Fuels
  18. Engels S, Fong LSRZ, Chen Q, Leng MJ, McGowan S, Idris M, et al.
    Environ Pollut, 2018 Apr;235:907-917.
    PMID: 29353806 DOI: 10.1016/j.envpol.2018.01.007
    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters.
    Matched MeSH terms: Fossil Fuels
  19. Erdiwansyah, Mamat R, Sani MSM, Sudhakar K
    Sci Total Environ, 2019 Jun 20;670:1095-1102.
    PMID: 31018425 DOI: 10.1016/j.scitotenv.2019.03.273
    Southeast Asian countries stand at a crossroads concerning their shared energy future and heavily rely on fossil fuels for transport and electricity. Within Asia, especially India and China lead the world renewable energy generation undergoing a period of energy transition and economic transformation. Southeast Asian countries have huge potentials for sustainable energy sources. However they are yet to perform globally in renewable energy deployment due to various challenges. The primary objective of the study is to examine the renewable energy growth and analyse the government policies to scale up the deployment of renewables for power generation substantially. The study also offers policy recommendations to accelerate renewable energy exploitation sustainably across the region. To achieve the ambitious target of 23% renewables in the primary energy mix by 2025, ASEAN Governments should take proactive measures like removal of subsidies of fossil fuels, regional market integration and rapid implementation of the existing project. Eventually, each of this strategy will necessitate sustained leadership, political determination, and concrete actions from stakeholders, in particular, increased cooperation across the region.
    Matched MeSH terms: Fossil Fuels
  20. Geng X, Haig J, Lin B, Tian C, Zhu S, Cheng Z, et al.
    Environ Sci Technol, 2023 Sep 05;57(35):13067-13078.
    PMID: 37603309 DOI: 10.1021/acs.est.3c03481
    Aerosol black carbon (BC) is a short-lived climate pollutant. The poorly constrained provenance of tropical marine aerosol BC hinders the mechanistic understanding of extreme climate events and oceanic carbon cycling. Here, we collected PM2.5 samples during research cruise NORC2016-10 through South China Sea (SCS) and Northeast Indian Ocean (NEIO) and measured the dual-carbon isotope compositions (δ13C-Δ14C) of BC using hydrogen pyrolysis technique. Aerosol BC exhibits six different δ13C-Δ14C isotopic spaces (i.e., isotope provinces). Liquid fossil fuel combustion, from shipping emissions and adjacent land, is the predominant source of BC over isotope provinces "SCS close to Chinese Mainland" (53.5%), "Malacca Strait" (53.4%), and "Open NEIO" (40.7%). C3 biomass burning is the major contributor to BC over isotope provinces "NEIO close to Southeast Asia" (55.8%), "Open NEIO" (41.3%), and "Open SCS" (40.0%). Coal combustion and C4 biomass burning show higher contributions to BC over "Sunda Strait" and "Open SCS" than the others. Overall, NEIO near the Bay of Bengal, Malacca Strait, and north SCS are three hot spots of fossil fuel-derived BC; the first two areas are also hot spots of biomass-derived BC. The comparable δ13C-Δ14C between BC in aerosol and dissolved BC in surface seawater may suggest atmospheric BC deposition as a potential source of oceanic dissolved BC.
    Matched MeSH terms: Fossil Fuels*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links