Displaying all 11 publications

Abstract:
Sort:
  1. Shamsul NS, Kamarudin SK, Rahman NA
    Bioresour Technol, 2018 Jan;247:821-828.
    PMID: 30060418 DOI: 10.1016/j.biortech.2017.09.140
    Treated sludge, goat manure, sugarcane bagasse, empty fruit bunches of oil palm (EFBP) and dry leaves are agro wastes that have high potential for use as feedstocks for the production of 5-hydroxymethylfurfural (5-HMF). The focus of this study is to investigate the production of 5-HMF from agro wastes via co-hydrothermal (CHT) treatment and extraction. Present study include examine on agro waste's physical and chemical properties and also their thermal degradation behaviour. The analysis of the bio-oil products is conducted by FTIR and GC-MS. Co-hydrothermal experiments were conducted at a temperature of 300°C with an experimental time of 15min, followed by alcohol extraction. Highest carbon and hydrogen content are 45.94% and 6.49% (dry leaves) with maximum high heating value 18.39MJ/kg (dry leaves) and fix carbon value 6.60 (goat manure). Through CHT about 39% 5-HMF, 22.97% carboxylic acids, 0.97% of aromatic and 0.73% aldehyde obtained.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*
  2. Ariffin AA, Ghazali HM, Kavousi P
    Food Chem, 2014 Jul 1;154:102-7.
    PMID: 24518321 DOI: 10.1016/j.foodchem.2013.12.082
    For the first time 5-hydroxymethyl-2-furaldehyde (HMF) was separated from crude palm oil (CPO), and its authenticity was determined using an RP-HPLC method. Separation was accomplished with isocratic elution of a mobile phase comprising water and methanol (92:8 v/v) on a Purospher Star RP-18e column (250mm×4.6mm, 5.0μm). The flow rate was adjusted to 1ml/min and detection was performed at 284nm. The method was validated, and results obtained exhibit a good recovery (95.58% to 98.39%). Assessment of precision showed that the relative standard deviations (RSD%) of retention times and peak areas of spiked samples were less than 0.59% and 2.66%, respectively. Further, the limit of detection (LOD) and LOQ were 0.02, 0.05mg/kg, respectively, and the response was linear across the applied ranges. The crude palm oil samples analysed exhibited HMF content less than 2.27mg/kg.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*
  3. Sarwono A, Man Z, Muhammad N, Khan AS, Hamzah WSW, Rahim AHA, et al.
    Ultrason Sonochem, 2017 Jul;37:310-319.
    PMID: 28427638 DOI: 10.1016/j.ultsonch.2017.01.028
    5-Hydroxymethylfurfural (HMF) has been identified as a promising biomass-derived platform chemical. In this study, one pot production of HMF was studied in ionic liquid (IL) under probe sonication technique. Compared with the conventional heating technique, the use of probe ultrasonic irradiation reduced the reaction time from hours to minutes. Glucose, cellulose and local bamboo, treated with ultrasonic, produced HMF in the yields of 43%, 31% and 13% respectively, within less than 10min. The influence of various parameters such as acoustic power, reaction time, catalysts and glucose loading were studied. About 40% HMF yield at glucose conversion above 90% could be obtained with 2% of catalyst in 3min. Negligible amount of soluble by-product was detected, and humin formation could be controlled by adjusting the different process parameters. Upon extraction of HMF, the mixture of ionic liquid and catalyst could be reused and exhibited no significant reduction of HMF yield over five successive runs. The purity of regenerated [C4C1im]Cl and HMF was confirmed by NMR spectroscopy, indicating neither changes in the chemical structure nor presence of any major contaminants during the conversion under ultrasonic treatment. 13C NMR suggests that [C4C1im]Cl/CrCl3 catalyses mutarotation of α-glucopyranose to β-glucopyranose leading to isomerization and finally conversion to HMF. The experimental results demonstrate that the use of probe sonication technique for conversion to HMF provides a positive process benefit.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*
  4. Arai T, Aikawa S, Sudesh K, Arai W, Mohammad Rawi NF, Leh CPP, et al.
    World J Microbiol Biotechnol, 2024 Jun 13;40(8):242.
    PMID: 38869634 DOI: 10.1007/s11274-024-04041-8
    Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.
    Matched MeSH terms: Furaldehyde/analogs & derivatives
  5. Nordin N, Hasbullah NH, Abu Bakar N
    Food Chem, 2024 Nov 15;458:140236.
    PMID: 38959805 DOI: 10.1016/j.foodchem.2024.140236
    Coffee, a globally consumed beverage, has raised concerns in Islamic jurisprudence due to the possible presence of alcohol compounds. This research aims to utilise the sensitivity and reliability of 1H NMR spectroscopy in the quantification of alcohol compounds such as ethanol, furfuryl alcohol, and 5-(hydroxymethyl) furfural (HMF) in commercial instant coffee. Analysis of seven products was performed using advanced 1H Nuclear Magnetic Resonance (NMR) spectroscopy together with Statistical Total Correlation Spectroscopy (STOCSY) and Resolution-Enhanced (RED)-STORM. The analysis of the 100 mg sample revealed the absence of ethanol. The amount of furfuryl alcohol and HMF in the selected commercial instant coffee samples was 0.817 μg and 0.0553 μg, respectively. This study demonstrates the utility of 1H NMR spectroscopy in accurate quantification of trace components for various applications.
    Matched MeSH terms: Furaldehyde/analogs & derivatives
  6. Kavousi P, Mirhosseini H, Ghazali H, Ariffin AA
    Food Chem, 2015 Sep 1;182:164-70.
    PMID: 25842323 DOI: 10.1016/j.foodchem.2015.02.135
    5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*
  7. Khalil MI, Sulaiman SA, Gan SH
    Food Chem Toxicol, 2010 Aug-Sep;48(8-9):2388-92.
    PMID: 20595027 DOI: 10.1016/j.fct.2010.05.076
    5-Hydroxymethylfurfural (HMF) content is an indicator of the purity of honey. High concentrations of HMF in honey indicate overheating, poor storage conditions and old honey. This study investigated the HMF content of nine Malaysian honey samples, as well as the correlation of HMF formation with physicochemical properties of honey. Based on the recommendation by the International Honey Commission, three methods for the determination of HMF were used: (1) high performance liquid chromatography (HPLC), (2) White spectrophotometry and (3) Winkler spectrophotometry methods. HPLC and White spectrophotometric results yielded almost similar values, whereas the Winkler method showed higher readings. The physicochemical properties of honey (pH, free acids, lactones and total acids) showed significant correlation with HMF content and may provide parameters that could be used to make quick assessments of honey quality. The HMF content of fresh Malaysian honey samples stored for 3-6 months (at 2.80-24.87 mg/kg) was within the internationally recommended value (80 mg/kg for tropical honeys), while honey samples stored for longer periods (12-24 months) contained much higher HMF concentrations (128.19-1131.76 mg/kg). Therefore, it is recommended that honey should generally be consumed within one year, regardless of the type.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*
  8. Lawrence GD, Rahmat R, Makahleh A, Saad B
    J Chromatogr Sci, 2017 Nov 01;55(10):1043-1050.
    PMID: 28977384 DOI: 10.1093/chromsci/bmx073
    The measurement of α-dicarbonyls and other degradation products of sugars has become important in view of their toxicity. Although there are several methods used for their analysis, most require long reaction times to form UV absorbing or fluorescent derivatives and the nonpolar nature of commonly used derivatives necessitates relatively high concentrations of organic solvents for elution in reverse phase liquid chromatography. The present method describes the use of Girard-T reagent in a simple, one step derivatization of α-dicarbonyls and conjugated aldehydes and analysis using ion-pair reverse phase liquid chromatography. The limit of detection was in the range of 0.06-0.09 μM (4-12 ng/mL) for glyoxal, methylglyoxal, 3-deoxyglucosone and 5-hydroxymethylfurfural with good linear response and reproducibility using UV detection. The hydrazone derivatives were stable for several days in solution. The method was used to study degradation of several sugars and quantification of the target α-dicarbonyls and 5-hydroxymethylfurfural in several soft drinks.
    Matched MeSH terms: Furaldehyde/analogs & derivatives*
  9. Abu-Bakar NB, Makahleh A, Saad B
    Talanta, 2014 Mar;120:47-54.
    PMID: 24468341 DOI: 10.1016/j.talanta.2013.11.081
    A fast and simple solvent microextraction technique using salting out-vortex-assisted liquid-liquid microextraction (salting out-VALLME) was developed for the extraction of furfurals (2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF) and 5-hydroxymethylfurfural (5-HMF)) and patulin (PAT) in fruit juice samples. The optimum extraction conditions for 5 mL sample were: extraction solvent, 1-hexanol; volume of extractant, 200 µL; vortex time, 45 s; salt addition, 20%. The simultaneous determination of the furfurals and PAT were investigated using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The separation was performed using ODS Hypersil C18 column (4.6 mm i.d × 250 mm, 5 μm) under gradient elution. The detection wavelengths used for all compounds were 280 nm except for 3-F (210 nm). The furfurals and PAT were successfully separated in less than 9 min. Good linearities (r(2)>0.99) were obtained within the range 1-5000 μg L(-1) for all compounds except for 3-F (10-5000 µg L(-1)) and PAT (0.5-100 μg L(-1)). The limits of detection (0.28-3.2 µg L(-1)) were estimated at S/N ratio of 3. The validated salting out-VALLME-HPLC method was applied for the analysis of furfurals and PAT in fruit juice samples (apple, mango and grape).
    Matched MeSH terms: Furaldehyde/analogs & derivatives*
  10. Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH
    PMID: 23433009 DOI: 10.1186/1472-6882-13-43
    The aim of the present study was to evaluate the physicochemical and antioxidant properties of Malaysian monofloral honey samples-acacia, pineapple and borneo honey-and compare them with tualang honey. Acacia and pineapple honey are produced by Apis mellifera bees while borneo and tualang honey are produced by Apis cerana and Apis dorsata bees, respectively.
    Matched MeSH terms: Furaldehyde/analogs & derivatives
  11. Bakhtiyari E, Ahmadian-Attari MM, Salehi P, Khallaghi B, Dargahi L, Mohamed Z, et al.
    Nutr Neurosci, 2017 Oct;20(8):469-477.
    PMID: 27219682 DOI: 10.1080/1028415X.2016.1183986
    OBJECTIVES: Although grape has been recently the topic of many investigations, Maviz (a kind of dried one) has remained neglected. The aim of this study was to assess anti-Alzheimer activity of Maviz.

    METHODS: To reach this goal, total phenolic content (TPC) of ethanolic (Eth) and aqueous (Aq) extracts were determined and radical scavenging activity was assayed by 2,2-diphenyl-1-picrylhydrazyl. Chemical compositions of each extract were also determined via GC-Mass. Behavioral changes were studied via passive avoidance and Morris water maze in Aβ-induced model of Alzheimer's disease. Catalase (CAT) and superoxide dismutase (SOD) determination were also done on rats' hippocampus.

    RESULTS: The results showed that seed Eth extract has a high level of TPC and radical scavenging activity. However, this extract had surprisingly no effect on memory and CAT and SOD activities. In contrast, fruit Aq and Eth extracts (containing furfurals as major compounds) inhibited memory impairment (P 

    Matched MeSH terms: Furaldehyde/analogs & derivatives
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links