Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Ahmed R, Sinnathambi CM, Eldmerdash U, Subbarao D
    ScientificWorldJournal, 2014;2014:758137.
    PMID: 24672368 DOI: 10.1155/2014/758137
    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values.
    Matched MeSH terms: Gases/chemistry*
  2. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
    Matched MeSH terms: Gases/chemistry*
  3. Atnaw SM, Kueh SC, Sulaiman SA
    ScientificWorldJournal, 2014;2014:497830.
    PMID: 24526899 DOI: 10.1155/2014/497830
    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.
    Matched MeSH terms: Gases/chemistry
  4. Azam MA, Alias FM, Tack LW, Seman RNAR, Taib MFM
    J Mol Graph Model, 2017 08;75:85-93.
    PMID: 28531817 DOI: 10.1016/j.jmgm.2017.05.003
    Carbon nanotubes (CNTs) have received enormous attention due to their fascinating properties to be used in various applications including electronics, sensing, energy storage and conversion. The first principles calculations within density functional theory (DFT) have been carried out in order to investigate the structural, electronic and optical properties of un-doped and doped CNT nanostructures. O2, CO2, and CH3OH have been chosen as gas molecules to study the adsorption properties based on zigzag (8,0) SWCNTs. The results demonstrate that the adsorption of O2, CO2, and CH3OH gas molecules on pristine, Si-doped and B-doped SWCNTs are either physisorption or chemisorption. Moreover, the electronic properties indicating SWCNT shows significant improvement toward gas adsorption which provides the impact of selecting the best gas sensor materials towards detecting gas molecule. Therefore, these pristine, Si-, and B-doped SWCNTs can be considered to be very good potential candidates for sensing application.
    Matched MeSH terms: Gases/chemistry*
  5. Chaharborj SS, Amin N
    PLoS One, 2020;15(2):e0228955.
    PMID: 32106248 DOI: 10.1371/journal.pone.0228955
    This paper discusses the optimal control of pressure using the zero-gradient control (ZGC) approach. It is applied for the first time in the study to control the optimal pressure of hydrogen natural gas mixture in an inclined pipeline. The solution to the flow problem is first validated with existing results using the Taylor series approximation, regression analysis and the Runge-Kutta method combined. The optimal pressure is then determined using ZGC where the optimal set points are calculated without having to solve the non-linear system of equations associated with the standard optimization problem. It is shown that the mass ratio is the more effective parameter compared to the initial pressure in controlling the maximum variation of pressure in a gas pipeline.
    Matched MeSH terms: Gases/chemistry*
  6. Chan YW, Siow KS, Ng PY, Gires U, Yeop Majlis B
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:861-871.
    PMID: 27524089 DOI: 10.1016/j.msec.2016.07.040
    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of <1nm. ppCar had a static water contact angle of 78°, even after 10days of air aging and it maintained its stability throughout 24h of LB broth immersion. ppCar showed promising results in the live-dead fluorescence assay and crystal violet assay. The biofilm assay showed an effective reduction of E. coli and S. aureus bacteria by 86% and 84% respectively. ppCar is also shown to rupture the bacteria membrane for its bactericidal effects. The cytotoxicity test indicated that the coating is not cytotoxic to the human cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner.
    Matched MeSH terms: Plasma Gases/chemistry*
  7. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2009 Jan 15;161(1):570-4.
    PMID: 18462871 DOI: 10.1016/j.jhazmat.2008.03.097
    This paper examines the effectiveness of 10 additives toward improving SO2 sorption capacities (SSC) of rice husk ash (RHA)/lime (CaO) sorbent. The additives examined are NaOH, CaCl2, LiCl, NaHCO3, NaBr, BaCl2, KOH, K2HPO4, FeCl3 and MgCl2. Most of the additives tested increased the SSC of RHA/CaO sorbent, whereby NaOH gave highest SSC (30mg SO2/g sorbent) at optimum concentration (0.25mol/l) compared to other additives examined. The SSC of RHA/CaO sorbent prepared with NaOH addition was also increases from 17.2 to 39.5mg SO2/g sorbent as the water vapor increases from 0% RH to 80% RH. This is probably due to the fact that most of additives tested act as deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, which played an important role in the reaction between the dry-type sorbent and SO2. Although most of the additives were shown to have positive effect on the SSC of the RHA/CaO sorbent, some were found to have negative or insignificant effect. Thus, this study demonstrates that proper selection of additives can improve the SSC of RHA/CaO sorbent significantly.
    Matched MeSH terms: Gases/chemistry*
  8. Fowler D, Nemitz E, Misztal P, Di Marco C, Skiba U, Ryder J, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3196-209.
    PMID: 22006962 DOI: 10.1098/rstb.2011.0055
    This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.
    Matched MeSH terms: Gases/chemistry*
  9. Gharehkhani S, Nouri-Borujerdi A, Kazi SN, Yarmand H
    ScientificWorldJournal, 2014;2014:504601.
    PMID: 25143981 DOI: 10.1155/2014/504601
    In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.
    Matched MeSH terms: Gases/chemistry*
  10. Guangul FM, Sulaiman SA, Ramli A
    Bioresour Technol, 2012 Dec;126:224-32.
    PMID: 23073112 DOI: 10.1016/j.biortech.2012.09.018
    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.
    Matched MeSH terms: Gases/chemistry*
  11. Hashim SA, Samsudin FN, Wong CS, Abu Bakar K, Yap SL, Mohd Zin MF
    Arch Biochem Biophys, 2016 09 01;605:34-40.
    PMID: 27056469 DOI: 10.1016/j.abb.2016.03.032
    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.
    Matched MeSH terms: Plasma Gases/chemistry*
  12. Jothi L, Neogi S, Jaganathan SK, Nageswaran G
    Biosens Bioelectron, 2018 May 15;105:236-242.
    PMID: 29412948 DOI: 10.1016/j.bios.2018.01.040
    A novel nitrogen/argon (N2/Ar) radio frequency (RF) plasma functionalized graphene nanosheet/graphene nanoribbon (GS/GNR) hybrid material (N2/Ar/GS/GNR) was developed for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Various nitrogen mites introduced into GS/GNR hybrid structure was evidenced by a detailed microscopic, spectroscopic and surface area analysis. Owing to the unique structure and properties originating from the enhanced surface area, nitrogen functional groups and defects introduced on both the basal and edges, N2/Ar/GS/GNR/GCE showed high electrocatalytic activity for the electrochemical oxidations of AA, DA, and UA with the respective lowest detection limits of 5.3, 2.5 and 5.7 nM and peak-to-peak separation potential (ΔEP) (vs Ag/AgCl) in DPV of 220, 152 and 372 mV for AA/DA, DA/UA and AA/UA respectively. Moreover, the selectivity, stability, repeatability and excellent performance in real time application of the fabricated N2/Ar/GS/GNR/GCE electrode suggests that it can be considered as a potential electrode material for simultaneous detection of AA, DA, and UA.
    Matched MeSH terms: Plasma Gases/chemistry
  13. Khan F, Latif MT, Juneng L, Amil N, Mohd Nadzir MS, Syedul Hoque HM
    J Air Waste Manag Assoc, 2015 Aug;65(8):958-69.
    PMID: 26030827 DOI: 10.1080/10962247.2015.1042094
    Long-term measurements (2004-2011) of PM10 (particulate matter with an aerodynamic diameter <10 μm) and trace gases (carbon monoxide [CO], ozone [O₃], nitrogen oxide [NO], oxides of nitrogen [NO(x)], nitrogen dioxide [NO₂], sulfur dioxide [SO₂], methane [CH₄], nonmethane hydrocarbon [NMHC]) have been conducted to study the effect of physicochemical factors on the PM10 concentration. In addition, this study includes source apportionment of PM10 in Kuala Lumpur urban environment. An advanced principal component analysis (PCA) technique coupled with absolute principal component scores (APCS) and multiple linear regression (MLR) has been applied. The average annual concentration of PM10 for 8 yr is 51.3 ± 25.8 μg m⁻³, which exceeds the Recommended Malaysian Air Quality Guideline (RMAQG) and international guideline values. Detail analysis shows the dependency of PM10 on the linear changes of the motor vehicles in use and the amount of biomass burning, particularly from Sumatra, Indonesia, during southwesterly monsoon. The main sources of PM10 identified by PCA-APCS-MLR are traffic combustion (28%), ozone coupled with meteorological factors (20%), and wind-blown particles (1%). However, the apportionment procedure left 28.0 μg m⁻³, that is, 51% of PM10 undetermined.
    Matched MeSH terms: Gases/chemistry
  14. Kundu SK, Chakraborty C, Yagihara S, Teoh SL, Das S
    Curr Drug Deliv, 2018;15(10):1381-1392.
    PMID: 30124152 DOI: 10.2174/1567201815666180820101255
    Surgical operations are impossible without administering proper analgesia. Advancement in the field of anesthesia has invariably resulted in the accomplishment of all surgical processes without any inconvenience. Admittedly, the use of noble gas is on the decline. The noble gases may not interact chemically with any other substance under normal temperature and pressure but they may interact with proteins and lipids. Different anesthetic molecules may stimulate either proteins or lipids in membrane. There is a connection between the anesthetic molecules and the hydrophobic region of the membrane. In the present review, we attempt to highlight the interaction between the anesthetic molecule with proteins and lipids and their effects. We sketched few noble gases and some other existing molecules such as halothane and alcohol which interacted with proteins and lipids.
    Matched MeSH terms: Noble Gases/chemistry*
  15. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2014 Apr;158:193-200.
    PMID: 24607454 DOI: 10.1016/j.biortech.2014.02.015
    CO2 gasification of oil palm shell (OPS) char to produce CO through the Boudouard reaction (C + CO2 ↔ 2CO) was investigated under microwave irradiation. A microwave heating system was developed to carry out the CO2 gasification in a packed bed of OPS char. The influence of char particle size, temperature and gas flow rate on CO2 conversion and CO evolution was considered. It was attempted to improve the reactivity of OPS char in gasification reaction through incorporation of Fe catalyst into the char skeleton. Very promising results were achieved in our experiments, where a CO2 conversion of 99% could be maintained during 60 min microwave-induced gasification of iron-catalyzed char. When similar gasification experiments were performed in conventional electric furnace, the superior performance of microwave over thermal driven reaction was elucidated. The activation energies of 36.0, 74.2 and 247.2 kJ/mol were obtained for catalytic and non-catalytic microwave and thermal heating, respectively.
    Matched MeSH terms: Gases/chemistry*
  16. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2013 Mar;132:351-5.
    PMID: 23195653 DOI: 10.1016/j.biortech.2012.10.092
    Palm empty fruit bunch ash (EFB-ash) was used as a natural catalyst, rich in potassium to enhance the CO2 gasification reactivity of palm shell char (PS-char). Various EFB-ash loadings (ranging from 0 to 12.5wt.%) were implemented to improve the reactivity of PS-char during CO2 gasification studies using thermogravimetric analysis. The achieved results explored that the highest gasification reactivity was devoted to 10% EFB-ash loaded char. The SEM-EDS and XRD analyses further confirmed the successful loading of EFB-ash on PS-char which contributed to promoting the gasification reactivity of char. Random pore model was applied to determine the kinetic parameters in catalytic gasification of char at various temperatures of 800-900°C. The dependence of char reaction rate on gasification temperature resulted in a straight line in Arrhenius-type plot, from which the activation energy of 158.75kJ/mol was obtained for the catalytic char gasification.
    Matched MeSH terms: Gases/chemistry*
  17. Lim JW, Lim PE, Seng CE, Adnan R
    Bioresour Technol, 2013 Feb;129:485-94.
    PMID: 23266850 DOI: 10.1016/j.biortech.2012.11.111
    Moving bed sequencing batch reactors (MBSBRs) packed with 8% (v/v) of 8-, 27- and 64-mL polyurethane (PU) foam cubes, respectively, were investigated for simultaneous 4-chlorophenol (4-CP) and nitrogen removal at increasing 4-CP concentration. When the 4-CP concentration exceeded 300 mg L(-1), the MBSBR with 27-mL foam cubes was observed to outperform the other MBSBRs in removing 4-CP and nitrogen. The reasons were: (1) there were more biomass in inner layer of the 27-mL cubes, compared to that of the 8-mL cubes, which was more shielded from the inhibitory effect of 4-CP and (2) the 27-mL cubes were more mobile than the 64-mL cubes. Although increasing 4-CP concentration to 600 mg L(-1) resulted in incomplete removal of 4-CP in the MBSBRs, results of the batch reactor with 27-mL foam cubes showed that complete 4-CP removal within the REACT period could be achieved by increasing the packing volume to 20%.
    Matched MeSH terms: Gases/chemistry
  18. Mir SA, Siddiqui MW, Dar BN, Shah MA, Wani MH, Roohinejad S, et al.
    J Appl Microbiol, 2020 Sep;129(3):474-485.
    PMID: 31800143 DOI: 10.1111/jam.14541
    Consumers' demand is increasing for safe foods without impairing the phytochemical and sensory quality. In turn, it has increased research interest in the exploration of innovative food processing technologies. Cold plasma technology is getting popularity now days owing to its high efficacy in decontamination of microbes in fruit and fruit-based products. As a on-thermal approach, plasma processing maintains the quality of fruits and minimizes the thermal effects on nutritional properties. Cold plasma is also exploited for inactivating enzymes and degrading pesticides as both are directly related with quality loss and presently are most important concerns in fresh produce industry. The present review covers the influence of cold plasma technology on reducing microbial risks and enhancing the quality attributes in fruits.
    Matched MeSH terms: Plasma Gases/chemistry*
  19. Mohammed MA, Salmiaton A, Wan Azlina WA, Mohamad Amran MS
    Bioresour Technol, 2012 Apr;110:628-36.
    PMID: 22326334 DOI: 10.1016/j.biortech.2012.01.056
    Empty fruit bunches (EFBs), a waste material from the palm oil industry, were subjected to pyrolysis and gasification. A high content of volatiles (>82%) increased the reactivity of EFBs, and more than 90% decomposed at 700°C; however, a high content of moisture (>50%) and oxygen (>45%) resulted in a low calorific value. Thermogravimetric analysis demonstrated that the higher the heating rate and the smaller the particle size, the higher the peak and final reaction temperatures. The least squares estimation for a first-order reaction model was used to study the degradation kinetics. The values of activation energy increased from 61.14 to 73.76 and from 40.06 to 47.99kJ/mol when the EFB particle size increased from 0.3 to 1.0mm for holocellulose and lignin degradation stages, respectively. The fuel characteristics of EFB are comparable to those of other biomasses and EFB can be considered a good candidate for gasification.
    Matched MeSH terms: Gases/chemistry*
  20. Naz MY, Shukrullah S, Ghaffar A, Rehman NU
    ScientificWorldJournal, 2014;2014:279868.
    PMID: 24683326 DOI: 10.1155/2014/279868
    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures.
    Matched MeSH terms: Plasma Gases/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links