Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Tan EW, Tan KY, Phang LV, Kumar PV, In LLA
    PLoS One, 2019;14(7):e0219912.
    PMID: 31335895 DOI: 10.1371/journal.pone.0219912
    Vaccine administration via the oral route is preferable to parenteral routes due to ease of administration. To date, most available oral vaccines comprises of live attenuated pathogens as oppose to peptide-based vaccines due to its low bioavailability within the gastrointestinal (GI) tract. Over the years, probiotic-based peptide delivery vehicles comprising of lactic acid bacteria such as Lactococcus lactis has emerged as an interesting alternative due to its generally recognized as safe (GRAS) status, a fully sequenced genome, transient gut colonization time, and is an efficient cellular factory for heterologous protein production. However, its survivability through the GI tract is low, thus better delivery approaches are being explored to improve its bioavailability. In this study, we employ the incorporation of a double coated mucoadhesive film consisting of sodium alginate and Lycoat RS 720 film as the inner coat. The formulated film exhibits good mechanical properties of tensile strength and percent elongation for manipulation and handling with an entrapment yield of 93.14±2.74%. The formulated mucoadhesive film is subsequently loaded into gelatin capsules with an outer enteric Eudragit L100-55 coating capable of a pH-dependent breakdown above pH 5.5 to protect against gastric digestion. The final product and unprotected controls were subjected to in vitro simulated gastrointestinal digestions to assess its survivability. The product demonstrated enhanced protection with an increase of 69.22±0.67% (gastric) and 40.61±8.23% (intestinal) survivability compared to unprotected controls after 6 hours of sequential digestion. This translates to a 3.5 fold increase in overall survivability. Owing to this, the proposed oral delivery system has shown promising potential as a live gastrointestinal vaccine delivery host. Further studies involving in vivo gastrointestinal survivability and mice immunization tests are currently being carried out to assess the efficacy of this novel oral delivery system in comparison to parenteral routes.
    Matched MeSH terms: Gelatin/chemistry
  2. Anarjan N, Nehdi IA, Sbihi HM, Al-Resayes SI, Malmiri HJ, Tan CP
    Molecules, 2014 Sep 10;19(9):14257-65.
    PMID: 25211006 DOI: 10.3390/molecules190914257
    The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid) in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose oleate as a small molecular emulsifier, sodium caseinate (SC) as a protein and gum Arabic as a polysaccharide were used as stabilizer systems in the formation of astaxanthin nanodispersions via an emulsification-evaporation process. The results indicated that the addition of SC to gelatin in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to production of nanodispersions with the smallest particle size (121.4±8.6 nm). It was also shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin nanodispersions in terms of physical stability (minimum polydispersity index (PDI) and maximum zeta-potential). This study demonstrated that the mixture of surface active compounds showed higher emulsifying and stabilizing functionality compared to using them individually in the preparation of astaxanthin nanodispersions.
    Matched MeSH terms: Gelatin/chemistry*
  3. Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY
    Molecules, 2011 Aug 25;16(9):7237-48.
    PMID: 21869751 DOI: 10.3390/molecules16097237
    In this research, silver nanoparticles (AgNPs) were synthesized in chitosan (Cts), Cts/gelatin and gelatin suspensions using a chemical reducing agent. Cts and gelatin were used as natural stabilizers and solid support, whereas AgNO(3) was used as the silver precursor. Sodium borohydride (NaBH(4)) was used as the reducing agent. The properties of AgNPs in Cts, Cts/gelatin and gelatin bionanocomposites (BNCs) were studied in terms of their surface plasmon resonance, crystalline structure, average diameter size, particle distributions, surface topography and functional groups. All the samples were characterized by UV-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy.
    Matched MeSH terms: Gelatin/chemistry*
  4. Ahmad T, Ismail A, Ahmad SA, Khalil KA, Leo TK, Awad EA, et al.
    Molecules, 2018 Mar 22;23(4).
    PMID: 29565325 DOI: 10.3390/molecules23040730
    Actinidin was used to pretreat the bovine hide and ultrasonic wave (53 kHz and 500 W) was used for the time durations of 2, 4 and 6 h at 60 °C to extract gelatin samples (UA2, UA4 and UA6, respectively). Control (UAC) gelatin was extracted using ultrasound for 6 h at 60 °C without enzyme pretreatment. There was significant (p < 0.05) increase in gelatin yield as the time duration of ultrasound treatment increased with UA6 giving the highest yield of 19.65%. Gel strength and viscosity of UAC and UA6 extracted gelatin samples were 627.53 and 502.16 g and 16.33 and 15.60 mPa.s, respectively. Longer duration of ultrasound treatment increased amino acids content of the extracted gelatin and UAC exhibited the highest content of amino acids. Progressive degradation of polypeptide chains was observed in the protein pattern of the extracted gelatin as the time duration of ultrasound extraction increased. Fourier transform infrared (FTIR) spectroscopy depicted loss of molecular order and degradation in UA6. Scanning electron microscopy (SEM) revealed protein aggregation and network formation in the gelatin samples with increasing time of ultrasound treatment. The study indicated that ultrasound assisted gelatin extraction using actinidin exhibited high yield with good quality gelatin.
    Matched MeSH terms: Gelatin/chemistry
  5. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Gelatin/chemistry
  6. Al-Namnam NM, Kutty MG, Chai WL, Ha KO, Kim KH, Siar CH, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Mar 01;72:332-340.
    PMID: 28024594 DOI: 10.1016/j.msec.2016.11.086
    Recently, a modified form of a three-dimension (3D) porous poly(caprolactone-trifumarate) (PCLTF) scaffold has been produced using a fabrication technique that involves gelatin microparticles porogen leaching. This poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold has been shown to be biocompatible, more flowable clinically, and has a shorter degradation time as compared to its existing predecessors. In this report, a detailed characterization of this new scaffold was performed by testing its cytocompatibility, analyzing the surface topography, and understanding its thermal, physical and mechanical properties. The result showed that the PCLTF-GMPs has no critical cytotoxic effect. To confirm improvement, the surface properties were compared against the older version of PCLTF fabricated using salt porogen leaching. This PCLTF-GMPs scaffold showed no significant difference (unpaired t-test; p>0.05) in mechanical properties before and after gelatin leaching. However, it is mechanically weaker when compared to its predecessors. It has a high biodegradability rate of 16weeks. The pore size produced ranges from 40 to 300μm, and the RMS roughness is 613.7±236.9nm. These characteristics are condusive for osteoblast in-growth, as observed by the extension of filopodia across the macropores. Overall, this newly produced material has good thermal, physical and mechanical properties that complements its biocompatibility and ease of use.
    Matched MeSH terms: Gelatin/chemistry*
  7. Kuan YH, Nafchi AM, Huda N, Ariffin F, Karim AA
    J Sci Food Agric, 2017 Mar;97(5):1663-1671.
    PMID: 27465360 DOI: 10.1002/jsfa.7970
    BACKGROUND: Previous studies have indicated that duck feet are a rich source of gelatin extractable from avian sources. In this study, the physicochemical and functional properties of avian gelatin extracted from duck feet (DFG) with acetic acid were compared with those of commercial bovine gelatin (BG).

    RESULTS: The yield of DFG obtained in this study was 7.01 ± 0.31%. High-performance liquid chromatography analysis indicated that the imino acid content was slightly lower for DFG compared with BG (P < 0.05). Differences in molecular size and amino acids between DFG and BG were also observed. The isoelectric points of DFG and BG were at pH 8 and 5 respectively, and the overall protein solubility of BG was higher than that of DFG. Gels prepared from BG exhibited higher bloom strength, viscosity and clarity and were darker in colour compared with DFG gels (P < 0.05). The gelling and melting points of BG were 21.8 and 29.47 °C respectively, while those of DFG were 20.5 and 27.8 °C respectively. BG exhibited slightly better emulsifying and foaming properties compared with DFG.

    CONCLUSION: Although some differences between DFG and BG were observed, the disparities were small, which indicates that DFG could be exploited commercially as an alternative source of gelatin. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Gelatin/chemistry*
  8. Hani NM, Torkamani AE, Azarian MH, Mahmood KW, Ngalim SH
    J Sci Food Agric, 2017 Aug;97(10):3348-3358.
    PMID: 27981649 DOI: 10.1002/jsfa.8185
    BACKGROUND: Drumstick (Moringa oleifera) leaves have been used as a folk herbal medicine across many cultures since ancient times. This is most probably due to presence of phytochemicals possessing antioxidant properties, which could retard oxidative stress, and their degenerative effect. The current study deals with nanoencapsulation of Moringa oleifera (MO) leaf ethanolic extract within fish sourced gelatine matrix using electrospinning technique.

    RESULTS: The total phenolic and flavonoid content, radical scavenging (IC50 ) and metal reducing properties were 67.0 ± 2.5 mg GAE g-1 sample 32.0 ± 0.5 mg QE g-1 extract, 0.08 ± 0.01 mg mL-1 and 510 ± 10 µmol eq Fe(II) g-1 extract, respectively. Morphological and spectroscopic analysis of the fibre mats confirmed successful nanoencapsulation of MO extract within defect free nanofibres via electrospinning process. The percentage encapsulation efficiency (EE) was between 80% and 85%. Furthermore, thermal stability of encapsulated fibres, especially at 3% and 5% of core loading content, was significantly improved. Toxicological analysis revealed that the extract in its original and encapsulated form was safe for oral consumption.

    CONCLUSION: Overall, the present study showed the potential of ambient temperature electrospinning process as a safe nanoencapsulation method, where MO extract retained its antioxidative capacities. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Gelatin/chemistry*
  9. Azilawati MI, Dzulkifly MH, Jamilah B, Shuhaimi M, Amin I
    J Pharm Biomed Anal, 2016 Sep 10;129:389-397.
    PMID: 27454091 DOI: 10.1016/j.jpba.2016.07.012
    A detailed procedure for estimating uncertainty according to the Laboratory of Government Chemists/Valid Analytical Measurement (LGC/VAM) protocol for determination of 18 amino acids in gelatin is proposed. The expanded uncertainty was estimated using mainly the method validation data (precision and trueness). Other sources of uncertainties were contributed by components in standard preparation measurements. The method scope covered a single matrix (gelatin) under a wide range of analyte concentrations. The uncertainty of method precision, μ(P) was 0.0237-0.1128pmolμl(-1) in which hydroxyproline and histidine represented the lowest and highest values of uncertainties, respectively. Proline and phenylalanine represented the lowest and highest uncertainties value for method recovery, μ(R) that was estimated within 0.0064-0.0995pmolμl(-1). The uncertainties from other sources, μ(Std) were 0.0325, 0.0428 and 0.0413pmolμl(-1) that were contributed by hydroxyproline, other amino acids and cystine, respectively. Hydroxyproline and phenylalanine represented the lowest and highest values of expanded uncertainty, U(y) that were determined at 0.0949 and 0.2473pmolμl(-1), respectively. The data were accurately defined and fulfill the technical requirements of ISO 17025:2005.
    Matched MeSH terms: Gelatin/chemistry*
  10. Beishenaliev A, Lim SS, Tshai KY, Khiew PS, Moh'd Sghayyar HN, Loh HS
    J Mater Sci Mater Med, 2019 May 24;30(6):62.
    PMID: 31127374 DOI: 10.1007/s10856-019-6264-4
    This study aimed to explore a potential use of fish scale-derived gelatin nanofibrous scaffolds (GNS) in tissue engineering due to their biological and economical merits. Extraction of gelatin was achieved via decalcification, sonication and lyophilization of mixed fish scales. To fabricate nano-scale architecture of scaffolds analogous to natural extracellular matrix, gelatin was rendered into nanofibrous matrices through 6-h electrospinning, resulting in the average diameter of 48 ± 12 nm. In order to improve the water-resistant ability while retaining their biocompatibility, GNS were physically crosslinked with ultraviolet (UV) irradiation for 5 min (UGN5), 10 min (UGN10) and 20 min (UGN20). On average, the diameter of nanofibers increased by 3 folds after crosslinking, however, Fourier transform infrared spectroscopy analysis confirmed that no major alterations occurred in the functional groups of gelatin. A degradation assay showed that UGN5 and UGN10 scaffolds remained in minimum essential medium for 14 days, while UGN20 scaffolds degraded completely after 10 days. All UGN scaffolds promoted adhesion and proliferation of human keratinocytes, HaCaT, without causing an apparent cytotoxicity. UGN5 scaffolds were shown to stimulate a better growth of HaCaT cells compared to other scaffolds upon 1 day of incubation, whereas UGN20 had a long-term effect on cells exhibiting 25% higher cell proliferation than positive control after 7 days. In the wound scratch assay, UGN5 scaffolds induced a rapid cell migration closing up to 79% of an artificial wound within 24 h. The current findings provide a new insight of UGN scaffolds to serve as wound dressings in the future. In the wound scratch assay, UGN5 induced a rapid cell migration closing up to 79% of an artificial wound within 24 h.
    Matched MeSH terms: Gelatin/chemistry*
  11. Hassan N, Ahmad T, Zain NM
    J Food Sci, 2018 Dec;83(12):2903-2911.
    PMID: 30440088 DOI: 10.1111/1750-3841.14370
    The issue of food authenticity has become a concern among religious adherents, particularly Muslims, due to the possible presence of nonhalal ingredients in foods as well as other commercial products. One of the nonhalal ingredients that commonly found in food and pharmaceutical products is gelatin which extracted from porcine source. Bovine and fish gelatin are also becoming the main commercial sources of gelatin. However, unclear information and labeling regarding the actual sources of gelatin in food and pharmaceutical products have become the main concern in halal authenticity issue since porcine consumption is prohibited for Muslims. Hence, numerous analytical methods involving chemical and chemometric analysis have been developed to identify the sources of gelatin. Chemical analysis techniques such as biochemical, chromatography, electrophoretic, and spectroscopic are usually combined with chemometric and mathematical methods such as principal component analysis, cluster, discriminant, and Fourier transform analysis for the gelatin classification. A sample result from Fourier transform infrared spectroscopy analysis, which combines Fourier transform and spectroscopic technique, is included in this paper. This paper presents an overview of chemical and chemometric methods involved in identification of different types of gelatin, which is important for halal authentication purposes.
    Matched MeSH terms: Gelatin/chemistry*
  12. Saravanan M, Bhaskar K, Maharajan G, Pillai KS
    J Drug Target, 2011 Feb;19(2):96-103.
    PMID: 20380621 DOI: 10.3109/10611861003733979
    We have previously reported on the targeting of diclofenac sodium in joint inflammation using gelatin magnetic microspheres. To overcome complications in the administration of magnetic microspheres and achieve higher targeting efficiency, the present work focuses on the formulation of gelatin microspheres for intra-articular administration. Drug-loaded microspheres were prepared by the emulsification/cross-linking method, characterized by drug loading, size distribution, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), gas chromatography, and in vitro release studies. The targeting efficiency of microspheres was studied in vivo in rabbits. The microspheres showed drug loading of 9.8, 18.3, and 26.7% w/w with an average size range of 37-46 µm, depending upon the drug-polymer ratio. They were spherical in nature and free from surface drug as evidenced by the SEM photographs. FT-IR, DSC, and XRD revealed the absence of drug-polymer interaction and amorphous nature of entrapped drug. Gas chromatography confirms the absences of residual glutaraldehyde. The formulated microspheres could prolong the drug release up to 30 days in vitro. About 81.2 and 43.7% of administered drug in the microspheres were recovered from the target joint after 1 and 7 days of postintra-articular injection, respectively, revealing good targeting efficiency.
    Matched MeSH terms: Gelatin/chemistry
  13. Azilawati MI, Hashim DM, Jamilah B, Amin I
    J Chromatogr A, 2014 Aug 1;1353:49-56.
    PMID: 24797394 DOI: 10.1016/j.chroma.2014.04.050
    In-house method validation was conducted to determine amino acid composition in gelatin by a pre-column derivatization procedure with the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent. The analytical parameters revealed that the validated method was capable of selectively performing a good chromatographic separation for 18 amino acids in less than 40 min; the overall detection and quantitation limit for amino acids fell into ranges of 5.68-12.48 and 36.0-39.0 pmol/μl, respectively; the matrix effect was not observed, and the linearity range was 37.5-1000 pmol/μl. The accuracy (precision and recovery) analyses of the method were conducted under repeatable conditions on different days in random order. Method precision revealed by HorRat values was significantly less than 2, except for histidine with a precision of 2.19, and the method recoveries had a range of 80-115% except for alanine which was recovered at 79.4%. The findings were reproducible and accurately defined, and the method was found to be suited to routine analysis of amino acid composition in gelatin-based ingredients.
    Matched MeSH terms: Gelatin/chemistry*
  14. Thilagar S, Jothi NA, Omar AR, Kamaruddin MY, Ganabadi S
    PMID: 18161832
    Skin grafts are indicated when there is a major loss of skin. Full-thickness skin graft is an ideal choice to reconstruct defect of irregular surface that is difficult to immobilize. Full-thickness mesh grafts can be applied to patch large skin defect when there is less donor site in extensively traumatized and burned surgical patients. The concept of using natural biomaterials such as keratin, basic fibroblast growth factor is slowly gaining popularity in the field of medical research to achieve early healing. The main objective of this study is to evaluate the efficacy of gelatin conjoined with keratin processed from the poultry feather and commercially available basic fibroblast growth factor (bFGF) as a sandwich layer in promoting the viability of full-thickness skin mesh grafts. The efficacy was assessed from the observation of clinical, bacteriological, and histopathological findings in three groups of experimental dogs. The clinical observations such as color, appearance and discharge, and hair growth were selected as criteria which indicated good and early acceptance of graft in keratin-gelatin (group II). On bacteriological examination, Staphylococcus aureus and Proteus was identified in few animals. Histopathological study of the patched graft revealed early presences of hair follicles; sebaceous gland, and normal thickness of the epidermis in keratin-gelatin in group II treated animals compared with other group (group I-control, group III-bFGF-gelatin).
    Matched MeSH terms: Gelatin/chemistry*
  15. Thu HE, Ng SF
    Int J Pharm, 2013 Sep 15;454(1):99-106.
    PMID: 23856162 DOI: 10.1016/j.ijpharm.2013.06.082
    In our previous study, a novel alginate-based bilayer film for slow-release wound dressings was successfully developed. We found that alginate alone yielded poor films; however, the addition of gelatine had significantly enhanced the drug dispersion as well as the physical properties. Here, an investigation of the drug-polymer interactions in the bilayer films was carried out. Drug content uniformity test and microscopy observation revealed that the addition of gelatine generated bilayer films with a homogenous drug distribution within the matrix. The FTIR and XRD data showed an increase in film crystallinity which might infer the presence of drug-polymer crystalline microaggregates in the films. DSC confirmed the drug-polymer interaction and indicated that the gelatine has no effect on the thermal behaviour of the microaggregates, suggesting the compatibility of the drug and excipients in the bilayer films. In conclusion, the addition of gelatine can promote homogenous dispersion of hydrophobic drugs in alginate films possibly through the formation of crystalline microaggregates.
    Matched MeSH terms: Gelatin/chemistry*
  16. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA
    Int J Nanomedicine, 2011;6:569-74.
    PMID: 21674013 DOI: 10.2147/IJN.S16867
    Silver nanoparticles (Ag-NPs) have been successfully prepared with simple and "green" synthesis method by reducing Ag(+) ions in aqueous gelatin media with and in the absence of glucose as a reducing agent. In this study, gelatin was used for the first time as a reducing and stabilizing agent. The effect of temperature on particle size of Ag-NPs was also studied. It was found that with increasing temperature the size of nanoparticles is decreased. It was found that the particle size of Ag-NPs obtained in gelatin solutions is smaller than in gelatin-glucose solutions, which can be related to the rate of reduction reaction. X-ray diffraction, ultraviolet-visible spectra, transmission electron microscopy, and atomic force microscopy revealed the formation of monodispersed Ag-NPs with a narrow particle size distribution.
    Matched MeSH terms: Gelatin/chemistry*
  17. Darroudi M, Ahmad MB, Zak AK, Zamiri R, Hakimi M
    Int J Mol Sci, 2011;12(9):6346-56.
    PMID: 22016663 DOI: 10.3390/ijms12096346
    Silver nanoparticles (Ag-NPs) were successfully synthesized using the UV irradiation of aqueous solutions containing AgNO(3) and gelatin as a silver source and stabilizer, respectively. The UV irradiation times influence the particles' diameter of the Ag-NPs, as evidenced from surface plasmon resonance (SPR) bands and transmission electron microscopy (TEM) images. When the UV irradiation time was increased, the mean size of particles continuously decreased as a result of photoinduced Ag-NPs fragmentation. Based on X-ray diffraction (XRD), the UV-irradiated Ag-NPs were a face-centered cubic (fcc) single crystal without any impurity. This study reveals that the UV irradiation-mediated method is a green chemistry and promising route for the synthesis of stable Ag-NPs for several applications (e.g., medical and surgical devices). The important advantages of this method are that it is cheap, easy, and free of toxic materials.
    Matched MeSH terms: Gelatin/chemistry*
  18. Ayoub AA, Mahmoud AH, Ribeiro JS, Daghrery A, Xu J, Fenno JC, et al.
    Int J Mol Sci, 2022 Nov 09;23(22).
    PMID: 36430238 DOI: 10.3390/ijms232213761
    This study was aimed at engineering photocrosslinkable azithromycin (AZ)-laden gelatin methacryloyl fibers via electrospinning to serve as a localized and biodegradable drug delivery system for endodontic infection control. AZ at three distinct amounts was mixed with solubilized gelatin methacryloyl and the photoinitiator to obtain the following fibers: GelMA+5%AZ, GelMA+10%AZ, and GelMA+15%AZ. Fiber morphology, diameter, AZ incorporation, mechanical properties, degradation profile, and antimicrobial action against Aggregatibacter actinomycetemcomitans and Actinomyces naeslundii were also studied. In vitro compatibility with human-derived dental pulp stem cells and inflammatory response in vivo using a subcutaneous rat model were also determined. A bead-free fibrous microstructure with interconnected pores was observed for all groups. GelMA and GelMA+10%AZ had the highest fiber diameter means. The tensile strength of the GelMA-based fibers was reduced upon AZ addition. A similar pattern was observed for the degradation profile in vitro. GelMA+15%AZ fibers led to the highest bacterial inhibition. The presence of AZ, regardless of the concentration, did not pose significant toxicity. In vivo findings indicated higher blood vessel formation, mild inflammation, and mature and thick well-oriented collagen fibers interweaving with the engineered fibers. Altogether, AZ-laden photocrosslinkable GelMA fibers had adequate mechanical and degradation properties, with 15%AZ displaying significant antimicrobial activity without compromising biocompatibility.
    Matched MeSH terms: Gelatin/chemistry
  19. Halim ALA, Kamari A, Phillip E
    Int J Biol Macromol, 2018 Dec;120(Pt A):1119-1126.
    PMID: 30176328 DOI: 10.1016/j.ijbiomac.2018.08.169
    In this work, chitosan, gelatin and methylcellulose films incorporated with tannic acid (TA) were synthesised, characterised and applied for the first time to preserve cherry tomatoes (Solanum lycopersicum var. cerasiforme) and grapes (Vitis vinifera). The addition of TA at 15% (w/w) increased the transparency value of biopolymer films. The highest increment of transparency value was obtained for MC-TA film, increased from 0.572 to 4.73 A/mm. Based on antimicrobial study, the addition of TA improved the antibacterial properties of biopolymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The ability of films to preserve both fruits was evaluated in a 14-day preservation study. The application of biopolymer films treated with TA has decreased the weight loss and browning index of fruits, as compared to control films. A significant reduction in the weight loss of cherry tomatoes wrapped with chitosan (from 21.3 to 19.6%), gelatin (from 22.1 to 15.5%) and methylcellulose (26.2 to 20.5%) films were obtained following TA treatment. Overall, results obtained from this study highlight the effects of TA on physiochemical properties of biopolymer films and their ability to preserve fruits.
    Matched MeSH terms: Gelatin/chemistry*
  20. Fan HY, Duquette D, Dumont MJ, Simpson BK
    Int J Biol Macromol, 2018 Dec;120(Pt A):263-273.
    PMID: 30130612 DOI: 10.1016/j.ijbiomac.2018.08.084
    Composite films comprised of salmon (Salmo salar) skin gelatin and zein were prepared via crosslinking with glutaraldehyde. Response surface methodology (RSM) was used to optimize film composition to maximize tensile strength (TS) and elongation at break (EAB), and to minimize water solubility (WS) of the films. The significant (P gelatin-zein composite film was successfully crosslinked after the addition of glutaraldehyde, with the formation of crosslinked networks between proteins and a denser packed organization of proteins. Consequently, the resultant crosslinked composite film exhibited improvement on light transparency, water resistance and mechanical strength as a function of increasing humidity.
    Matched MeSH terms: Gelatin/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links