Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Dyck JA, Bosco JJ
    Br J Haematol, 1989 May;72(1):64-7.
    PMID: 2736243
    Forty-six Malaysian patients with chronic granulocytic leukaemia were found to be rearranged in the breakpoint cluster region (BCR) of chromosome 22, molecular evidence of Philadelphia chromosome (t9.22) translocation. Through the use of a 1.2 kb 3' BCR probe and two restriction enzyme digests, patients' breakpoints could be localized either to 5' or 3' regions of the BCR. Breakpoint site localization at the time of DNA sampling did not show any positive statistical association to clinical status defined as chronic phase, chronic phase with less than 6 months to blast crisis, accelerated phase and blast crisis. This was in contrast to earlier reports which indicated that patients with breakpoint at 3' site were at a higher biologic risk for entering blast crisis.
    Matched MeSH terms: Gene Rearrangement*
  2. Bosco JJ, Dyck JA
    Singapore Med J, 1989 Aug;30(4):363-7.
    PMID: 2814539
    Rearrangements in the DNA of chronic myelogenous leukemia patients of Chinese, Malay and Indian origin were detected in the breakpoint cluster region of chromosome 22 using molecular techniques. The DNA of fifty patients was examined using a 1.2 kb DNA probe. Rearrangements were detected in 46/50 patients. Karyotypic data were available in nine patients, all of whom were Philadelphia chromosome positive and exhibited DNA rearrangement. Detection of the Philadelphia translocation by molecular methods, at this institution, where cytogenetics is not routinely performed, confirms its diagnostic value. The rearrangement data obtained in this study is consistent with molecular features of chronic myelogenous leukemia patients of Western countries.
    Matched MeSH terms: Gene Rearrangement*
  3. Wong SC, Stoming TA, Efremov GD, Huisman TH
    Hemoglobin, 1989;13(1):1-5.
    PMID: 2703362
    DNA samples from numerous subjects of different racial and ethnic backgrounds, with or without various hemoglobinopathies (classical beta-thalassemia; silent beta-thalassemia, Hb E, sickle cell anemia), were studied for a rearrangement (+ATA; -T) at nucleotide -530 in the 5' flanking region of the beta-globin gene using amplified DNA and 32P-labeled synthetic oligonucleotide probes. The data show that this unusual sequence is a common feature among East-Asians and Blacks (particularly SS patients), and is not associated with mild thalassemic features typical for the silent form of beta-thalassemia, as has been suggested (5).
    Matched MeSH terms: Gene Rearrangement*
  4. Chin YM, Bosco JJ, Koh CL
    Med J Malaysia, 1992 Jun;47(2):110-3.
    PMID: 1494330
    Deoxyribonucleic acid (DNA) of twenty chronic myeloid leukemia (CML) and thirty acute lymphoblastic leukemia (ALL) patients were analysed by Southern hybridization. The DNA was digested with BglII and hybridized with a 4.5-kilobase (kb) ph1/bcr-3 DNA probe. All the 20 CML patients showed gene rearrangement within a 5.8-kb segment (the major breakpoint cluster region, M-bcr) of the breakpoint cluster region (bcr) gene of chromosome 22, indicating the presence of the Philadelphia chromosome. M-bcr rearrangement at the bcr gene of chromosome twenty-two was not detected in all the thirty ALL patients (nine adults and twenty-one children) and two normal controls.
    Matched MeSH terms: Gene Rearrangement*
  5. Fadilah SA, Hamidah AB, Cheong SK
    Med J Malaysia, 1999 Sep;54(3):383-5.
    PMID: 11045070
    The presence of serum cold agglutinin can be the initial presentation of lymphoproliferative diseases. Conditions with persistent cold agglutinins are a spectrum of diseases that vary from benign lymphoproliferation of the "autoimmune-like chronic cold agglutinin disease" to malignant lymphoma. We report a case of a 72-year-old woman who presented with severe anaemia, hepatosplenomegaly and episodes of peripheral haemagglutination precipitated by cold exposure. The haemoglobin was 5.6 g/dL with a cold agglutinin titer of 1:256 at 4 degrees C and 1:8 at room temperature (30 degrees C). The cold agglutinin showed anti-I specificity and kappa light chain restriction. Peripheral blood showed atypical lymphoid cells with a B-cell immunophenotype. Immunoglobulin gene rearrangement study by polymerase chain reaction (PCR) showed an amplified band at 100 bp, consistent with a clonal proliferation of B-lymphocytes. We believe that our patient had cold antibody haemolytic anaemia as the initial presentation of a low-grade non-Hodgkin's lymphoma. The association of cold antibody haemolytic anaemia with low-grade B-cell lymphoma is unusual.
    Matched MeSH terms: Gene Rearrangement
  6. Ainoon O, Hamidah AB, Cheong SK, Hamidah HN
    Malays J Pathol, 2000 Jun;22(1):5-11.
    PMID: 16329531
    Rearrangement of the immunoglobulin heavy chain (IgH) gene has been used as a marker of lineage and clonality in the diagnosis of B lymphoproliferative disorders. A number of PCR-based techniques have been developed to overcome the disadvantages of Southern blotting, the standard technique in detecting IgH gene rearrangement. Using an established seminested PCR technique with consensus primers to the V and J regions of the IgH gene, we analysed DNA prepared from peripheral blood and/or bone marrow specimens from 30 cases of known B cell malignancies (16 chronic lymphocytic leukemia, 11 acute lymphoblastic leukemia and 3 Non-Hodgkin Lymphoma), 3 cases of T lymphoproliferative disease and 3 cases of reactive lymphocytosis diagnosed in Hospital UKM to detect rearranged IgH gene. We found that monoclonality as represented by the presence of rearranged IgH gene were demonstrated in all the 30 cases. The PCR findings showed 100% concordance with the Southern blot analysis results which also showed rearranged IgH bands in all the 30 cases. We also found that none of the cases of T lymphoproliferative diseases and reactive lymphocytosis showed presence of rearranged IgH band, suggesting that the amplification using the IgH primers is lineage-specific. In conclusion, we find the PCR a useful method to detect IgH gene rearrangement in peripheral blood and bone marrow specimen. Since the PCR results are comparable to that of the Southern blotting in demonstrating B cell monoclonality and owing to its many advantages we feel that it can replace the Southern blot technique for the diagnosis of B cell malignancies.
    Matched MeSH terms: Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics*
  7. Tai YC, Peh SC
    Singapore Med J, 2003 May;44(5):250-5.
    PMID: 13677361
    T- and B-lymphocytes are involved in recognition of foreign antigen by the specificity of their surface T-cell receptor and immunoglobulin, generated by gene rearrangement. Each T- and B-lymphocyte carries unique rearranged TCR or immunoglobulin gene, which has been applied to detect clonal from non-clonal T- and B-cell proliferation.
    Matched MeSH terms: Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor*
  8. Tai YC, Kim LH, Peh SC
    Pathology, 2003 Oct;35(5):436-43.
    PMID: 14555389
    AIMS: The most common recurrent genetic aberration in anaplastic large cell lymphoma (ALCL) is translocation involving the ALK gene that results in ectopic expression of ALK protein in lymphoid tissue. This study aims to investigate the frequency of ALK gene rearrangement in a series of Asian ALCL.

    METHODS: ALK gene rearrangement was detected by immunostaining of ALK protein and fluorescence in situ hybridisation (FISH) targeting at the 2p23 region.

    RESULTS: The expression of ALK protein was detected in 24/34 (71%) of the cases, and it was significantly higher in childhood cases (100%) when compared to adult cases (47%). The analyses by FISH were consistent with the results from immunostaining of ALK protein, but the analyses were only successful in 15/34 (44%) cases. FISH analyses detected extra copies of ALK gene in three cases, including one case that expressed ALK protein and showed 2p23 rearrangement.

    CONCLUSIONS: The current series revealed a high frequency of ALK gene rearrangement, especially in the children. Immunostaining of ALK protein is a reliable indication of ALK gene rearrangement, and is superior to FISH. However, FISH analysis is useful in detecting other genetic aberrations that are not related to ALK gene rearrangement.

    Matched MeSH terms: Gene Rearrangement*
  9. Tai YC, Kim LH, Peh SC
    Pathol. Int., 2004 Mar;54(3):158-66.
    PMID: 14989738
    Natural killer (NK)/T-cell lymphomas are frequently associated with Epstein-Barr virus (EBV), and usually lack TCR gene rearrangement. Studies from Asia have reported frequent deletion in the LMP-1 gene in EBV-associated nasopharyngeal carcinoma (NPC). The present study aims to investigate LMP-1 and TCRgamma gene status in upper aerodigestive tract lymphomas. A total of 43 cases were classified into T-, B-, and NK/T-cell tumors based on the phenotype expressions of CD3(+)/CD20(-)/CD56(-), CD3(-)/CD20(+)/CD56(-), and CD3(+)/CD20(-)/CD56(+), respectively. The presence of EBV in the tumor was confirmed by EBV early RNA-in situ hybridization. LMP-1 gene deletion and TCR gamma gene rearrangement were analyzed by polymerase chain reaction on paraffin-embedded tissues. There were 20 NK/T-, eight T-, and 15 B-cell phenotype lymphomas in the present series, and EBV was detected in 19 (95%), two (25%), and three (20%) cases in the respective groups. All EBV+ cases carried 30-bp deletion in the LMP-1 gene, and two of the NK/T-cell cases were infected by both the wild type and deleted strains. Five (25%) of the NK/T-cell phenotype lymphomas showed rearranged TCR gamma gene. The present study revealed a high frequency of EBV association, and a high frequency of 30-bp deletion in the LMP-1 gene in the virus in the present series of lymphoma. The NK/T-phenotype lymphomas are comprised of both NK-cell and cytotoxic T-lymphocyte-derived tumors.
    Matched MeSH terms: Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
  10. Gill HK, Keoh TS, Dhaliwal JS, Moore S, Kim TS, Hassan R, et al.
    Cancer Genet. Cytogenet., 2005 Jan 15;156(2):129-33.
    PMID: 15642392
    Eighty-eight multi-ethnic Malaysian pediatric acute lymphoblastic leukemia (ALL) patients were screened for the TEL-AML1 rearrangement by reverse transcription-polymerase chain reaction (RT-PCR). Fluorescence in situ hybridization (FISH) was used as an independent screen for 30 cases and to confirm RT-PCR positive cases. Seventeen patients, or 19%, were found to be t(12;21) positive. Ethnically the group comprised 12 Malays, 4 Chinese, and 1 Indian. All patients, including 1 with an unusual blast cell morphology who suffered an early relapse and death, were characteristic TEL-AML1 cases in cell count, age, ALL subset classification, and fusion transcript expressed. This study shows that in Malaysia, TEL-AML1 is found in the same distinct ALL subset and at a similar frequency as in other diverse childhood ALL cohorts.
    Matched MeSH terms: Gene Rearrangement
  11. Shia AK, Gan GG, Jairaman S, Peh SC
    J Clin Pathol, 2005 Sep;58(9):962-7.
    PMID: 16126878
    Recent reports have divided diffuse large B cell lymphoma (DLBCL) into germinal centre B cell-like and activated B cell-like subgroups with implicated differences in prognosis.
    Matched MeSH terms: Gene Rearrangement, B-Lymphocyte
  12. Sharifah NA, Nurismah MI, Lee HC, Aisyah AN, Clarence-Ko CH, Naqiyah I, et al.
    Cancer Epidemiol, 2010 Aug;34(4):442-7.
    PMID: 20451485 DOI: 10.1016/j.canep.2010.04.010
    The incidence of breast cancer has been on the rise in Malaysia. It is suggested that a subset of breast cancer cases were associated with germline mutation in breast cancer susceptibility (BRCA) genes. Most of the BRCA mutations reported in Malaysia were point mutations, small deletions and insertions. Here we report the first study of BRCA large genomic rearrangements (LGRs) in Malaysia. We aimed to detect the presence of LGRs in the BRCA genes of Malaysian patients with breast cancer.
    Matched MeSH terms: Gene Rearrangement*
  13. Kang P, Mariapun S, Phuah SY, Lim LS, Liu J, Yoon SY, et al.
    Breast Cancer Res Treat, 2010 Nov;124(2):579-84.
    PMID: 20617377 DOI: 10.1007/s10549-010-1018-5
    Early studies of genetic predisposition due to the BRCA1 and BRCA2 genes have focused largely on sequence alterations, but it has now emerged that 4-28% of inherited mutations in the BRCA genes may be due to large genomic rearrangements of these genes. However, to date, there have been relatively few studies of large genomic rearrangements in Asian populations. We have conducted a full sequencing and large genomic rearrangement analysis (using Multiplex Ligation-dependent Probe Amplification, MLPA) of 324 breast cancer patients who were selected from a multi-ethnic hospital-based cohort on the basis of age of onset of breast cancer and/or family history. Three unrelated individuals were found to have large genomic rearrangements: 2 in BRCA1 and 1 in BRCA2, which accounts for 2/24 (8%) of the total mutations detected in BRCA1 and 1/23 (4%) of the mutations in BRCA2 detected in this cohort. Notably, the family history of the individuals with these mutations is largely unremarkable suggesting that family history alone is a poor predictor of mutation status in Asian families. In conclusion, this study in a multi-ethnic (Malay, Chinese, Indian) cohort suggests that large genomic rearrangements are present at a low frequency but should nonetheless be included in the routine testing for BRCA1 and BRCA2.
    Matched MeSH terms: Gene Rearrangement*
  14. Maha A, Gan GG, Koh CL
    Hematology, 2010 Dec;15(6):382-90.
    PMID: 21114900 DOI: 10.1179/102453310X12719010991902
    T cells undergo a series of complex phenotypic changes before achieving maturation. Discrete stages of T-cell differentiation are simplified to four stages (pro-, pre-, cortical and mature-T cell) and used in the classification of T-cell leukaemia. HLA-DR has been reported to be expressed in immature T-cell acute lymphoblastic leukemia (ALL) and also confer a poorer treatment outcome. Simultaneously, the genotype goes through distinct pattern changes due to rearrangement of T-cell receptor (TCR) genes. TCR gene rearrangement is important in the diagnosis of clonality and used as markers to detect minimal residual disease in lymphoproliferative disorders. We identified a subset within Pro-T and Pre-T cell cases distinguished by the expression of HLA-DR. These subgroups appeared to be more immature as rearrangement of the TCR-gamma gene was either at germline or involved only the first constant region (C1) unlike a more rearranged pattern in the HLA-DR-subgroups. We also observed a higher incidence of mediastinal mass (67%) in the HLA-DR-subgroup in the Pre-T stage. These characteristics may be useful as markers to further refine staging of T-cell ALL and determine prognosis.
    Matched MeSH terms: Gene Rearrangement, T-Lymphocyte*
  15. Yee PH, Sim SP
    J Biomed Sci, 2010;17:77.
    PMID: 20858288 DOI: 10.1186/1423-0127-17-77
    Nasopharyngeal carcinoma (NPC) is commonly found in Southern China and South East Asia. Epstein-Barr virus (EBV) infection is well associated with NPC and has been implicated in its pathogenesis. Moreover, various chromosome rearrangements were reported in NPC. However, the underlying mechanism of chromosome rearrangement remains unclear. Furthermore, the relationship between EBV and chromosome rearrangement with respect to the pathogenesis of NPC has not been established. We hypothesize that during virus- or stress-induced apoptosis, chromosomes are initially cleaved at the base of the chromatin loop domain structure. Upon DNA repair, cell may survive with rearranged chromosomes.
    Matched MeSH terms: Gene Rearrangement
  16. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
    Matched MeSH terms: Gene Rearrangement*
  17. Sabariah, M. N., Zainina, S., Faridah, I., Leong, C. F.
    MyJurnal
    Clonal disorders of LGL may either be CD3+ CD56- or CD3- CD56+ phenotype and these have been designated as T-cell leukaemia (T-LGL) or natural killer cell (NK)-LGL leukaemia respectively. Clonality is usually demonstrated by clonal rearrangement of T-cell receptor gene rearrangement or identified by flowcytometry analysis. Most patients with T-LGL will have an indolent course. In this report we described an aggressiveness of disease in a patient with clonal CD3+ LGL leukaemia whose cells also co-expressed CD56 diagnosed by flowcytometry. The patient responded well to interrupt ALL standard risk protocol however succumbed to her disease while waiting for upfront stem cell transplant. This case highlights on both the classical laboratory findings of rare entity of disease as well as a review of the literature pertaining particularly on its management.
    Matched MeSH terms: Gene Rearrangement
  18. Al-Khateeb A, Zahri MK, Mohamed MS, Sasongko TH, Ibrahim S, Yusof Z, et al.
    BMC Med Genet, 2011;12:40.
    PMID: 21418584 DOI: 10.1186/1471-2350-12-40
    Familial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown.We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan). The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements.
    Matched MeSH terms: Gene Rearrangement
  19. Noor Haslina MN, Marini R, Rosnah B, Shafini MY, Wan Haslindawani WM, Mohd Nazri H, et al.
    West Indian Med J, 2013 Nov;62(8):701-4.
    PMID: 25014854 DOI: 10.7727/wimj.2013.253
    OBJECTIVE: Clonality detection through amplifying immunoglobulin heavy chain (IGH) gene rearrangements by polymerase chain reaction (PCR) is a useful tool in diagnosis of various B-lymphoid malignancies. Immunoglobulin heavy chain gene rearrangement can be an optimal target for clonality detection in B-lymphoid malignancies. In the present study, we evaluated the presence of IGH gene rearrangement in non B-cell haemato-oncology patients including T-cell acute lymphoblastic leukaemia (T-ALL), acute myeloblastic leukaemia (AML) and biphenotypic leukaemia.

    MEHTODS: We studied 18 cases of haematological malignancies which comprised five patients with T-ALL, 12 patients with AML and one with biphenotypic leukaemia.

    RESULTS: We found that the incidence of IGH gene rearrangement in T-ALL and AML were three (60%) and two (16.7%), respectively. The patient with biphenotypic leukaemia was negative for IGH gene rearrangement.

    CONCLUSION: Immunoglobulin gene rearrangement, which occurs in almost all haematological malignancies of B-cell lineage, also presents in a very small proportion of T-cell or myeloid malignancies.

    Matched MeSH terms: Gene Rearrangement
  20. Mohseni J, Boon Hock C, Abdul Razak C, Othman SN, Hayati F, Peitee WO, et al.
    Gene, 2014 Jan 1;533(1):240-5.
    PMID: 24103480 DOI: 10.1016/j.gene.2013.09.081
    Hyperargininemia is a very rare progressive neurometabolic disorder caused by deficiency of hepatic cytosolic arginase I, resulting from mutations in the ARG1 gene. Until now, some mutations were reported worldwide and none of them were of Southeast Asian origins. Furthermore, most reported mutations were point mutations and a few others deletions or insertions.
    Matched MeSH terms: Gene Rearrangement*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links