Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, et al.
    Molecules, 2012 Jul 16;17(7):8506-17.
    PMID: 22801364 DOI: 10.3390/molecules17078506
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
    Matched MeSH terms: Green Chemistry Technology/methods*
  2. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al.
    Int J Nanomedicine, 2012;7:5603-10.
    PMID: 23341739 DOI: 10.2147/IJN.S36786
    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.
    Matched MeSH terms: Green Chemistry Technology/methods*
  3. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Green Chemistry Technology/methods
  4. Yan LP, Gopinath SCB, Anbu P, Kasim FH, Zulhaimi HI, Yaakub ARW
    Prep Biochem Biotechnol, 2020;50(10):1053-1062.
    PMID: 32597353 DOI: 10.1080/10826068.2020.1783678
    This research comprehends iron-oxide nanoparticle (IONP) production, the apparent metallic nanostructure with unique superparamagnetic properties. Durian-rind-extract was utilized to synthesize IONP and the color of reaction mixture becomes dark brown, indicated the formation of IONPs and the peak was observed at ∼330 nm under UV-visible spectroscopy. The morphological observation under high-resolution microscopies has revealed the spherical shape and the average size (∼10 nm) of IONP. The further support was rendered by EDX-analysis showing apparent iron and oxygen peaks. XRD results displayed the crystalline planes with (110) and (300) planes at 2θ of 35.73° and 63.53°, respectively. XPS-data has clearly demonstrated the presence of Fe2P and O1s peaks. The IONPs were successfully capped by the polyphenol compounds from durian-rind-extract as evidenced by the representative peaks between 1633 and 595 cm-1 from FTIR analysis. The antimicrobial potentials of IONPs were evidenced by the disk-diffusion assay. The obtained results have abundant attention and being actively explored owing to their beneficial applications.
    Matched MeSH terms: Green Chemistry Technology*
  5. Sim EY, Wu TY
    J Sci Food Agric, 2010 Oct;90(13):2153-62.
    PMID: 20718020 DOI: 10.1002/jsfa.4127
    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW.
    Matched MeSH terms: Green Chemistry Technology
  6. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al.
    Int J Nanomedicine, 2020;15:275-300.
    PMID: 32021180 DOI: 10.2147/IJN.S233789
    Gold nanoparticles (AuNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. There are various methods to synthesize AuNPs which are generally categorized into two main types: chemical and physical synthesis. Continuous efforts have been devoted to search for other more environmental-friendly and economical large-scale methods, such as environmentally friendly biological methods known as green synthesis. Green synthesis is especially important to minimize the harmful chemical and toxic by-products during the conventional synthesis of AuNPs. Green materials such as plants, fungi, microorganisms, enzymes and biopolymers are currently used to synthesize various NPs. Biosynthesized AuNPs are generally safer for use in biomedical applications since they come from natural materials themselves. Multiple surface functionalities of AuNPs allow them to be more robust and flexible when combined with different biological assemblies or modifications for enhanced applications. This review focuses on recent developments of green synthesized AuNPs and discusses their numerous biomedical applications. Sources of green materials with successful examples and other key parameters that determine the functionalities of AuNPs are also discussed in this review.
    Matched MeSH terms: Green Chemistry Technology/methods*
  7. Liang H, Qin X, Tan CP, Li D, Wang Y
    J Agric Food Chem, 2018 Nov 21;66(46):12361-12367.
    PMID: 30394748 DOI: 10.1021/acs.jafc.8b04804
    Docosahexaenoyl and eicosapentaenoyl ethanolamides (DHEA and EPEA) have physiological functions, including immunomodulation, brain development, and anti-inflammation, but their efficient production is still unresolved. In this study, choline-chloride-based natural deep eutectic solvents are used as media to improve the production of DHEA and EPEA. The water content showed a key effect on the reactant conversion. Adding water to choline chloride-glucose (CG, molar ratio of 5:2) led to a significant increase (13.03% for EPEA and 27.95% for DHEA) in the yields after 1 h. The high yields of EPEA (96.84%) and DHEA (90.06%) were obtained under the optimized conditions [fish oil ethyl esters/ethanolamine molar ratio of 1:2, temperature of 60 °C, 1 h, enzyme loading of 2195 units, and CG containing 8.50% water of 43.30% (w/w, relative to total reactants)]. The products could be easily separated using centrifugation. In summary, the research has the potential to produce fatty acyl ethanolamides.
    Matched MeSH terms: Green Chemistry Technology/methods*
  8. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1173-1180.
    PMID: 30942109 DOI: 10.1080/21691401.2018.1549064
    Cervical cancer is the third most common highest mortality in women worldwide. The use of standard chemotherapeutic drugs against cervical cancer patients received several side effects. Therefore, we focused phytoconsituents-mediated synthesis of gold nanoparticles (AuNPs) considered as greatest attention in the treatment of cervical cancer. In this present study, we reported that green synthesis of AuNPs by using with Alternanthera Sessilis aqueous extract. Synthesis of AuNPs were characterized by UV visible spectroscopy, energy dispersive X-ray (EDX), selected area diffraction pattern (SAED), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and atomic force microscope. Synthesized AuNPs confirmed by the UV absorption maximum at 535 and crystal structure of gold AuNPs was further confirmed by EDX and SAED. TEM and atomic force microscopy images show the size and morphological distribution of nanoparticles. FTIR analysis was confirmed the hydroxyl groups, amine and alkaline groups of biomolecules are present in the AuNPs. Moreover, AuNPs induce cytotoxicity in cervical cancer cells and also induce apoptosis through modulating intrinsic apoptotic mechanisms in cervical cancer cells. This green synthesis of AuNPs from Alternanthera sessilis approach was easy, large scaled up and eco-friendly.
    Matched MeSH terms: Green Chemistry Technology
  9. Soheilmoghaddam M, Wahit MU
    Int J Biol Macromol, 2013 Jul;58:133-9.
    PMID: 23567285 DOI: 10.1016/j.ijbiomac.2013.03.066
    In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose.
    Matched MeSH terms: Green Chemistry Technology
  10. Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ
    PMID: 35055505 DOI: 10.3390/ijerph19020674
    Silver nanoparticles are one of the most extensively studied nanomaterials due to their high stability and low chemical reactivity in comparison to other metals. They are commonly synthesized using toxic chemical reducing agents which reduce metal ions into uncharged nanoparticles. However, in the last few decades, several efforts were made to develop green synthesis methods to avoid the use of hazardous materials. The natural biomolecules found in plants such as proteins/enzymes, amino acids, polysaccharides, alkaloids, alcoholic compounds, and vitamins are responsible for the formation of silver nanoparticles. The green synthesis of silver nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. In the present review we describe the green synthesis of nanoparticles using plants, bacteria, and fungi and the role of plant metabolites in the synthesis process. Moreover, the present review also describes some applications of silver nanoparticles in different aspects such as antimicrobial, biomedicine, mosquito control, environment and wastewater treatment, agricultural, food safety, and food packaging.
    Matched MeSH terms: Green Chemistry Technology/methods
  11. Yew YP, Shameli K, Mohamad SE, Lee KX, Teow SY
    Int J Mol Sci, 2020 Jul 09;21(14).
    PMID: 32659939 DOI: 10.3390/ijms21144851
    Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50-0.734 mg/mL) compared to the unloaded NCs (IC50-1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
    Matched MeSH terms: Green Chemistry Technology/methods
  12. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Green Chemistry Technology/methods*
  13. Sivakumar M, Tang SY, Tan KW
    Ultrason Sonochem, 2014 Nov;21(6):2069-83.
    PMID: 24755340 DOI: 10.1016/j.ultsonch.2014.03.025
    Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.
    Matched MeSH terms: Green Chemistry Technology/methods*
  14. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A
    Appl Biochem Biotechnol, 2015 Feb;175(4):1817-42.
    PMID: 25427594 DOI: 10.1007/s12010-014-1417-x
    Nanobiocatalysis is a new frontier of emerging nanosized material support in enzyme immobilization application. This paper is about a comprehensive review on cellulose nanofibers (CNF), including their structure, surface modification, chemical coupling for enzyme immobilization, and potential applications. The CNF surface consists of mainly -OH functional group that can be directly interacted weakly with enzyme, and its binding can be improved by surface modification and interaction of chemical coupling that forms a strong and stable covalent immobilization of enzyme. The knowledge of covalent interaction for enzyme immobilization is important to provide more efficient interaction between CNF support and enzyme molecule. Enzyme immobilization onto CNF is having potential for improving enzymatic performance and production yield, as well as contributing toward green technology and sustainable sources.
    Matched MeSH terms: Green Chemistry Technology
  15. Low SY, Tan JY, Ban ZH, Siwayanan P
    J Oleo Sci, 2021 Aug 05;70(8):1027-1037.
    PMID: 34248098 DOI: 10.5650/jos.ess21078
    Liquid detergent has an increasing demand in North America, Western Europe, and Southeast Asia countries owing to its convenience to use and efficiency to clean. Alpha methyl ester sulfonates (α-MES), an anionic surfactant derived from palm oil based methyl ester, was reported to have lower manufacturing cost, good detergency with less dosage, excellent biodegradability, higher tolerance to hard water, and lower eco-toxicity as compared to linear alkylbenzene sulfonates (LABS). LABS was known as the workhorse of the detergent industry in the 20th century. Although palm-based α-MES was successfully used as the sole surfactant in powder detergent, there are still some unsettled technical issues related to phase stability and viscosity when using this anionic surfactant in heavy-duty laundry liquid detergent formulations. This paper will review not only the market overview of detergents, the application and performance of green surfactants in laundry detergents but also will highlight the technical issues related to the application of palm-based α-MES in laundry liquid detergent and some of the possible methods to overcome the formulation adversities.
    Matched MeSH terms: Green Chemistry Technology
  16. Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, et al.
    Sci Rep, 2019 02 28;9(1):3122.
    PMID: 30816269 DOI: 10.1038/s41598-019-39528-0
    Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.
    Matched MeSH terms: Green Chemistry Technology
  17. Rambabu K, Bharath G, Banat F, Show PL
    J Hazard Mater, 2021 01 15;402:123560.
    PMID: 32759001 DOI: 10.1016/j.jhazmat.2020.123560
    Production of multi-functional zinc oxide nanoparticles (ZnO-NPs) for wastewater treatment through green-approaches is a desirable alternative for conventional synthesis routes. Biomass waste valorization for nanoparticles synthesis has received increased research attention. The present study reports date pulp waste (DPW) utilization as an effective bio-reductant for green-synthesis of ZnO-NPs. A simple and eco-friendly process with low reaction time and calcination temperature was adopted for DPW mediated ZnO-NPs (DP-ZnO-NPs) synthesis. Microscopic investigations of DP-ZnO-NPs confirmed the non-agglomeration and spherical nature of particles with mean diameter of 30 nm. EDX and XPS analysis defined the chemical composition and product purity of DP-ZnO-NPs. UV and photoluminescence studies exhibited surface plasmonic resonance at 381 nm and fluorescent nature of DP-ZnO-NPs. FTIR studies established a formation mechanism outline for DP-ZnO-NPs. XRD and Raman investigations confirmed the crystalline and hexagonal wurtzite phase of DP-ZnO-NPs. DSC/TG analysis displayed the thermal stability of DP-ZnO-NPs with <10 wt% loss upto 700 °C. Photocatalytic degradation of hazardous methylene blue and eosin yellow dyes using DP-ZnO-NPs, showed rapid decomposition rate with 90 % degradation efficiency. Additionally, DP-ZnO-NPs demonstrated significant antibacterial effects on various pathogenic bacteria in terms of zone-of-inhibition measured by disc-diffusion method. Thus, the as-prepared DP-ZnO-NPs is suitable for industrial wastewater treatment.
    Matched MeSH terms: Green Chemistry Technology
  18. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA, Shameli K
    Int J Mol Sci, 2010;11(10):3898-905.
    PMID: 21152307 DOI: 10.3390/ijms11103898
    Silver nanoparticles (Ag-NPs) were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR) peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries.
    Matched MeSH terms: Green Chemistry Technology/methods*
  19. Zain NM, Stapley AG, Shama G
    Carbohydr Polym, 2014 Nov 4;112:195-202.
    PMID: 25129735 DOI: 10.1016/j.carbpol.2014.05.081
    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively.
    Matched MeSH terms: Green Chemistry Technology
  20. Salim SA, Sukor R, Ismail MN, Selamat J
    Toxins (Basel), 2021 04 15;13(4).
    PMID: 33920815 DOI: 10.3390/toxins13040280
    Rice bran, a by-product of the rice milling process, has emerged as a functional food and being used in formulation of healthy food and drinks. However, rice bran is often contaminated with numerous mycotoxins. In this study, a method to simultaneous detection of aflatoxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), deoxynivalenol (DON), fumonisins (FB1 and FB2), sterigmatocystin (STG), T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone (ZEA) in rice bran was developed, optimized and validated using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In DLLME, using a solvent mixture of methanol/water (80:20, v/v) as the dispersive solvent and chloroform as the extraction solvent with the addition of 5% salt improved the extraction recoveries (63-120%). The developed method was further optimized using the response surface methodology (RSM) combined with Box-Behnken Design (BBD). Under the optimized experimental conditions, good linearity was obtained with a correlation coefficient (r2) ≥ 0.990 and a limit of detection (LOD) between 0.5 to 50 ng g-1. The recoveries ranged from 70.2% to 99.4% with an RSD below 1.28%. The proposed method was successfully applied to analyze multi-mycotoxin in 24 rice bran samples.
    Matched MeSH terms: Green Chemistry Technology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links