Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Hooshmandi Z, Daryanoosh F, Ahmadi Hekmatikar AH, Awang Daud DM
    Expert Rev Endocrinol Metab, 2024 Mar;19(2):187-197.
    PMID: 38103186 DOI: 10.1080/17446651.2023.2294091
    BACKGROUND: This study investigated the impact of the High Intensity Interval Resistance Training (HIIRT) protocol on hormonal changes in older women.

    RESEARCH DESIGN AND METHODS: Forty sarcopenic women were divided into an experimental group (EX = 30) and a control group (C = 10). The EX-group was further divided into Maintenance Training 1 (MT1 = 10), Maintenance Training 2 (MT2 = 10), and Detraining (DT = 10). The participants underwent 8 weeks of resistance training, consisting of hypertrophy and strength cycles. Following this, the EX-group had a 4-week period with no exercise or a reduced training volume. Measurements were taken at three time points.

    RESULTS: After 8 weeks, the EX-group showed significant improvements in Insulin Like Growth Factor-1 (IGF-1), Myostatin (MSTN), Follistatin (Fstn), Growth Hormone (GH) and Cortisol (Cort) compared to the control group. During the volume reduction period, there were no significant differences between MT1 and MT2 groups, but both groups saw increases in IGF-1, Fstn, GH, and decreases in MSTN and Cort compared to the DT group.

    CONCLUSIONS: These findings suggest that performing at least one training session per week with the HIIRT protocol is crucial for maintaining hormonal adaptations in sarcopenic older women.

    Matched MeSH terms: Human Growth Hormone*
  2. Ahmad MT, Shariff M, Goh YM, Banerjee S, Yusoff FM
    J Fish Biol, 2023 Sep;103(3):715-726.
    PMID: 37249562 DOI: 10.1111/jfb.15469
    Chlorella is one of the most widely accepted Chlorophyta used by many as livestock and aquaculture feed. Nonetheless, different studies on the overall performances of fish reported the unfavourable effect of high-level supplementations of Chlorella vulgaris. The current study determined the impact of low-level dietary supplementation of C. vulgaris alongside the different feeding durations and their interactions on the growth hormone (GH), growth performances, serum-biochemical indices, hepatic function and some immunological parameters of red hybrid tilapia. The fingerlings (mean weight: 14.25 ± 0.01 g, length: 13.5 ± 0.49 cm) were fed diets containing 0, 0.99%, 2.91% and 4.76% of C. vulgaris powder per kilogram dry diet for 90 days. GH, growth performance, serum-biochemical indices (total serum protein, albumin, globulin, glucose, aspartate aminotransferase and alanine aminotransferase) and some immunological (respiratory burst and lysozyme activities) parameters of the fish were examined after 30, 60 and 90 days of feeding. The results demonstrated that tilapia fed C. vulgaris-supplemented diets showed increased levels of respiratory burst, lysozyme, albumin and total protein, GH and growth performances (P growth performances, GH concentration, serum-biochemistry and some immunological parameters of red hybrid tilapia.
    Matched MeSH terms: Growth Hormone
  3. Gul R, Hanif MU, Gul F, Rehman HM, Saleem M, Ahmad MS, et al.
    Mol Biotechnol, 2023 Jul;65(7):1062-1075.
    PMID: 36437440 DOI: 10.1007/s12033-022-00612-y
    The current study focuses on molecular cloning, expression and structural characterization of growth hormone-receptor (GHR) and its extracellular domain as growth hormone binding protein (GHBP) from the liver of Nili-Ravi buffalo (Bubalus bubalis; Bb). RNA was isolated, genes were amplified by reverse transcriptase-polymerase chain reaction and sequence was characterized. The BbGHR sequence showed three amino acid variations in the extracellular domain when compared with Indian BbGHR. For the production of full length BbGHR and BbGHBP in Escherichia coli (E. coli) BL21 (RIPL) Codon Plus, expression plasmids were constructed under the control of T7lac promoter and isopropyl β-D thiogalactopyranoside was used as an inducer. BbGHR and BbGHBP were expressed as inclusion bodies at ~ 40% and > 30% of the total E. coli proteins, respectively. The BbGHBP was solubilized and refolded by dilution method using cysteine-cystine redox potential. The recombinant BbGHBP was purified and biological activity was checked on HeLa cell lines showing increase cell proliferation in the presence of ovine GH (oGH), hence justifying the increase in the half-life of GH in the presence of BbGHBP. For the molecular interactions of oGH-BbGHBP multiple docking programs were employed to explore the subsequent interactions which showed high binding affinity and presence of large number of hydrogen bonds. Molecular Dynamics studies performed to examine the stability of proteins and exhibited stable structures along with favorable molecular interactions. This study has described the sequence characterization of BbGHR in Nili-Ravi buffaloes and hence provided the basis for the assessment of GH-GHR binding in other Bovidae species.
    Matched MeSH terms: Growth Hormone/genetics; Growth Hormone/metabolism
  4. Liu S, Claude H, Yong SJ, Chen D
    Sci Rep, 2023 May 09;13(1):7540.
    PMID: 37161036 DOI: 10.1038/s41598-023-34090-2
    Gastroschisis has increased globally over recent decades, and this increase has not been explained by identified risk factors. We conducted a population-based study of infants born in Canada, 2004-2020. We used "winter" months (i.e., September through June) and northern areas of residence as indicators of less sunlight/less active lifestyle, while "summer" (i.e., July and August) and southern areas were considered as reference. Rate of gastroschisis for infants conceived in winter (3.4 per 10,000) was higher than for infants conceived in summer (2.2 per 10,000; p growth effector hormones. Our findings suggest that periconception depression with mediation by hypothyroidism, may play a causal role in offspring gastroschisis.
    Matched MeSH terms: Growth Hormone
  5. Low LS, Wong JHD, Tan LK, Chan WY, Jalaludin MY, Anuar Zaini A, et al.
    J Neuroradiol, 2023 Mar;50(2):271-277.
    PMID: 34800564 DOI: 10.1016/j.neurad.2021.11.004
    BACKGROUND: In subjects with isolated growth hormone deficiency (IGHD), recombinant human growth hormone (rhGH) is an approved method to achieve potential mid-parental height. However, data reporting rhGH treatment response in terms of brain structure volumes were scarce. We report the volumetric changes of the pituitary gland, basal ganglia, corpus callosum, thalamus, hippocampus and amygdala in these subjects post rhGH treatment.

    MATERIALS AND METHODS: This was a longitudinal study of eight IGHD subjects (2 males, 6 females) with a mean age of 11.1 ± 0.8 years and age-matched control groups. The pituitary gland, basal ganglia and limbic structures volumes were obtained using 3T MRI voxel-based morphology. The left-hand bone age was assessed using the Tanner-Whitehouse method. Follow-up imaging was performed after an average of 1.8 ± 0.4 years on rhGH.

    RESULTS: Subjects with IGHD had a smaller mean volume of the pituitary gland, right thalamus, hippocampus, and amygdala than the controls. After rhGH therapy, these volumes normalized to the age-matched controls. Corpus callosum of IGHD subjects had a larger mean volume than the controls and did not show much volume changes in response to rhGH therapy. There were changes towards normalization of bone age deficit of IGHD in response to rhGH therapy.

    CONCLUSION: The pituitary gland, hippocampus, and amygdala volumes in IGHD subjects were smaller than age-matched controls and showed the most response to rhGH therapy. Semi-automated volumetric assessment of pituitary gland, hippocampus, and amygdala using MRI may provide an objective assessment of response to rhGH therapy.

    Matched MeSH terms: Growth Hormone
  6. Yinghao L, Jing Y, Yongqi W, Jianming Z, Zeng G, Yiting T, et al.
    J Int Med Res, 2021 Sep;49(9):3000605211039564.
    PMID: 34486432 DOI: 10.1177/03000605211039564
    OBJECTIVE: To investigate the changes in serum growth hormone (GH), testosterone, and insulin-like growth factor 1 (IGF-1) during low-intensity resistance exercise under different cuff pressures.

    METHODS: We performed a single-blind, cross-over design study. Twenty-five healthy young men performed three exercise protocols as follows: 1) no blood flow restriction exercise (control group), 2) resistance exercise at 40% of arterial occlusion pressure (AOP) (low group), and 3) resistance exercise at 70% of AOP (high group). Blood lactate, GH, testosterone, and IGF-1 levels were measured at four time points.

    RESULTS: There were no differences in the indices before exercise. The blood flow restriction exercise under different pressures had different effects on each index and there was an interactive effect. GH levels were significantly higher in the high group than in the other groups after exercise. Immediately after exercise, IGF-1 and testosterone levels were significantly higher in the high group than in the other groups. At 15 minutes after exercise, testosterone levels were significantly higher in the high group than in the other groups.

    CONCLUSIONS: Low-intensity resistance exercise combined with blood flow restriction effectively increases GH, IGF-1, and testosterone levels in young men. Increasing the cuff pressure results in greater levels of hormone secretion.

    Matched MeSH terms: Growth Hormone*; Human Growth Hormone*
  7. Dimitri P, Fernandez-Luque L, Banerjee I, Bergadá I, Calliari LE, Dahlgren J, et al.
    J Med Internet Res, 2021 05 20;23(5):e27446.
    PMID: 34014174 DOI: 10.2196/27446
    BACKGROUND: The use of technology to support health and health care has grown rapidly in the last decade across all ages and medical specialties. Newly developed eHealth tools are being implemented in long-term management of growth failure in children, a low prevalence pediatric endocrine disorder.

    OBJECTIVE: Our objective was to create a framework that can guide future implementation and research on the use of eHealth tools to support patients with growth disorders who require growth hormone therapy.

    METHODS: A total of 12 pediatric endocrinologists with experience in eHealth, from a wide geographical distribution, participated in a series of online discussions. We summarized the discussions of 3 workshops, conducted during 2020, on the use of eHealth in the management of growth disorders, which were structured to provide insights on existing challenges, opportunities, and solutions for the implementation of eHealth tools across the patient journey, from referral to the end of pediatric therapy.

    RESULTS: A total of 815 responses were collected from 2 questionnaire-based activities covering referral and diagnosis of growth disorders, and subsequent growth hormone therapy stages of the patient pathway, relating to physicians, nurses, and patients, parents, or caregivers. We mapped the feedback from those discussions into a framework that we developed as a guide to integration of eHealth tools across the patient journey. Responses focused on improved clinical management, such as growth monitoring and automation of referral for early detection of growth disorders, which could trigger rapid evaluation and diagnosis. Patient support included the use of eHealth for enhanced patient and caregiver communication, better access to educational opportunities, and enhanced medical and psychological support during growth hormone therapy management. Given the potential availability of patient data from connected devices, artificial intelligence can be used to predict adherence and personalize patient support. Providing evidence to demonstrate the value and utility of eHealth tools will ensure that these tools are widely accepted, trusted, and used in clinical practice, but implementation issues (eg, adaptation to specific clinical settings) must be addressed.

    CONCLUSIONS: The use of eHealth in growth hormone therapy has major potential to improve the management of growth disorders along the patient journey. Combining objective clinical information and patient adherence data is vital in supporting decision-making and the development of new eHealth tools. Involvement of clinicians and patients in the process of integrating such technologies into clinical practice is essential for implementation and developing evidence that eHealth tools can provide value across the patient pathway.

    Matched MeSH terms: Growth Hormone*
  8. Sanchez-Bezanilla S, Åberg ND, Crock P, Walker FR, Nilsson M, Isgaard J, et al.
    Int J Mol Sci, 2020 Jun 26;21(12).
    PMID: 32604953 DOI: 10.3390/ijms21124563
    Cognitive impairment is common after stroke, and disturbances in hippocampal function are often involved, even in remote non-hippocampal injuries. In terms of hippocampal function, growth hormone (GH) is known to affects plasticity and cognition. We aimed to investigate whether GH treatment after an experimental cortical stroke could enhance remote hippocampal plasticity and the hippocampal-dependent visual discrimination task. C57BL6 male mice were subjected to cortical photothrombotic stroke. Stroke mice were then treated with either saline or GH at 48 h after occlusion for 28 days. We assessed learning and memory using mouse touchscreen platform for the visual discrimination task. We also evaluated markers of neural progenitor cells, synaptic plasticity and cerebrovascular remodelling in the hippocampal formation. GH treatment significantly improved the performance on visual discrimination task after stroke. We observed a concomitant increased number of bromodeoxyuridine-positive cells in the dentate gyrus of the hippocampus. We also detected increased protein levels and density of doublecortin, a neuronal precursor cells marker, as well as glutamate receptor 1 (GLuR1), a synaptic marker. These findings provide further neurobiological evidence for how GH treatment could be used to promote hippocampal plasticity in a remote region from the initial cortical injury, and thus enhance cognitive recovery after stroke.
    Matched MeSH terms: Human Growth Hormone/pharmacology*
  9. Ngim CF, Lai NM, Hong JY, Tan SL, Ramadas A, Muthukumarasamy P, et al.
    Cochrane Database Syst Rev, 2020 05 28;5:CD012284.
    PMID: 32463488 DOI: 10.1002/14651858.CD012284.pub3
    BACKGROUND: Thalassaemia is a recessively-inherited blood disorder that leads to anaemia of varying severity. In those affected by the more severe forms, regular blood transfusions are required which may lead to iron overload. Accumulated iron from blood transfusions may be deposited in vital organs including the heart, liver and endocrine organs such as the pituitary glands which can affect growth hormone production. Growth hormone deficiency is one of the factors that can lead to short stature, a common complication in people with thalassaemia. Growth hormone replacement therapy has been used in children with thalassaemia who have short stature and growth hormone deficiency. This review on the role of growth hormone was originally published in September 2017 and updated in April 2020.

    OBJECTIVES: To assess the benefits and safety of growth hormone therapy in people with thalassaemia.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Date of latest search: 14 November 2019. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Date of latest search: 06 January 2020.

    SELECTION CRITERIA: Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity.

    DATA COLLECTION AND ANALYSIS: Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The certainty of the evidence was assessed using GRADE criteria.

    MAIN RESULTS: We included one parallel trial conducted in Turkey. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The certainty of the evidence for all major outcomes was moderate, the main concern was imprecision of the estimates due to the small sample size leading to wide confidence intervals. Final height (cm) (the review's pre-specified primary outcome) and change in height were not assessed in the included trial. The trial reported no clear difference between groups in height standard deviation (SD) score after one year, mean difference (MD) -0.09 (95% confidence interval (CI) -0.33 to 0.15 (moderate-certainty evidence). However, modest improvements appeared to be observed in the following key outcomes in children receiving growth hormone therapy compared to control (moderate-certainty evidence): change between baseline and final visit in height SD score, MD 0.26 (95% CI 0.13 to 0.39); height velocity, MD 2.28 cm/year (95% CI 1.76 to 2.80); height velocity SD score, MD 3.31 (95% CI 2.43 to 4.19); and change in height velocity SD score between baseline and final visit, MD 3.41 (95% CI 2.45 to 4.37). No adverse effects of treatment were reported in either group; however, while there was no clear difference between groups in the oral glucose tolerance test at one year, fasting blood glucose was significantly higher in the growth hormone therapy group compared to control, although both results were still within the normal range, MD 6.67 mg/dL (95% CI 2.66 to 10.68). There were no data beyond the one-year trial period.

    AUTHORS' CONCLUSIONS: A small single trial contributed evidence of moderate certainty that the use of growth hormone for a year may improve height velocity of children with thalassaemia although height SD score in the treatment group was similar to the control group. There are no randomised controlled trials in adults or trials that address the use of growth hormone therapy over a longer period and assess its effect on final height and quality of life. The optimal dosage of growth hormone and the ideal time to start this therapy remain uncertain. Large well-designed randomised controlled trials over a longer period with sufficient duration of follow up are needed.

    Matched MeSH terms: Human Growth Hormone/therapeutic use*
  10. de la Paz EM
    Malays Orthop J, 2020 Mar;14(1):78-80.
    PMID: 32296486 DOI: 10.5704/MOJ.2003.012
    Marjolin's ulcer is an atypical malignancy that develops from deep scars of chronically traumatised skin. Laron syndrome (LS) is a rare autosomal recessive growth retardation from a mutation in the growth hormone receptor (GHR) gene leading to defective GHR, growth hormone insensitivity and eventual low levels of insulin-like growth factor type 1 (IGF-1). Affected individuals present with proportionate dwarfism and other characteristic physical defects, but at the same time are conferred protection against cancer due to low serum levels of IGF-1. We report an exceptional case of Marjolin's ulcer in the foot of a female LS patient 30 years after she sustained flame burns as a 6-month-old baby. Three months before coming to us, she had a 2x3cm ulcer that turned into a rapidly enlarging fungating mass involving the leg, ankle, and foot. Histopathologic analysis of an incision biopsy showed well-differentiated squamous cell carcinoma. The extent of her lesion precluded wide excision. Below knee amputation was done. A second biopsy confirmed the histopathologic diagnosis. This is the first reported case in the literature of Marjolin's ulcer in LS which raises the possibility that IGF-1 deficiency does not completely protect against squamous cell cancer.
    Matched MeSH terms: Growth Hormone; Human Growth Hormone
  11. Sanchez-Bezanilla S, Åberg ND, Crock P, Walker FR, Nilsson M, Isgaard J, et al.
    Int J Mol Sci, 2020 Jan 17;21(2).
    PMID: 31963456 DOI: 10.3390/ijms21020606
    Motor impairment is the most common and widely recognised clinical outcome after stroke. Current clinical practice in stroke rehabilitation focuses mainly on physical therapy, with no pharmacological intervention approved to facilitate functional recovery. Several studies have documented positive effects of growth hormone (GH) on cognitive function after stroke, but surprisingly, the effects on motor function remain unclear. In this study, photothrombotic occlusion targeting the motor and sensory cortex was induced in adult male mice. Two days post-stroke, mice were administered with recombinant human GH or saline, continuing for 28 days, followed by evaluation of motor function. Three days after initiation of the treatment, bromodeoxyuridine was administered for subsequent assessment of cell proliferation. Known neurorestorative processes within the peri-infarct area were evaluated by histological and biochemical analyses at 30 days post-stroke. This study demonstrated that GH treatment improves motor function after stroke by 50%-60%, as assessed using the cylinder and grid walk tests. Furthermore, the observed functional improvements occurred in parallel with a reduction in brain tissue loss, as well as increased cell proliferation, neurogenesis, increased synaptic plasticity and angiogenesis within the peri-infarct area. These findings provide new evidence about the potential therapeutic effects of GH in stroke recovery.
    Matched MeSH terms: Growth Hormone/administration & dosage*
  12. Muthusami S, Vidya B, Shankar EM, Vadivelu J, Ramachandran I, Stanley JA, et al.
    Curr Protein Pept Sci, 2020;21(1):52-65.
    PMID: 31702489 DOI: 10.2174/1389203720666191106113435
    Hormones are known to influence various body systems that include skeletal, cardiac, digestive, excretory, and immune systems. Emerging investigations suggest the key role played by secretions of endocrine glands in immune cell differentiation, proliferation, activation, and memory attributes of the immune system. The link between steroid hormones such as glucocorticoids and inflammation is widely known. However, the role of peptide hormones and amino acid derivatives such as growth and thyroid hormones, prolactin, dopamine, and thymopoietin in regulating the functioning of the immune system remains unclear. Here, we reviewed the findings pertinent to the functional role of hormone-immune interactions in health and disease and proposed perspective directions for translational research in the field.
    Matched MeSH terms: Growth Hormone/genetics; Growth Hormone/immunology; Growth Hormone/metabolism*
  13. Saref A, Suraya S, Singh D, Grundmann O, Narayanan S, Swogger MT, et al.
    J Ethnopharmacol, 2019 Jun 28;238:111876.
    PMID: 31014959 DOI: 10.1016/j.jep.2019.111876
    ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa (Korth.) is a traditional medicinal plant widely used in Southeast Asia for its opioid-like effects. Although kratom produces analgesia through binding of mitragynine and other alkaloids at the mu-opioid receptor (MOR), the association of long-term kratom use with adverse opioid-like effects remains unknown.

    AIM OF THE STUDY: To determine the self-reported prevalence and severity of opioid-related adverse effects after kratom initiation in a cohort of illicit opioid users.

    MATERIALS AND METHODS: A total of 163 illicit opioid users with current kratom use history were recruited through convenience sampling from the northern states of Peninsular Malaysia. Face-to-face interviews were conducted using a semi-structured questionnaire.

    RESULTS: Respondents were all males, majority Malays (94%, n = 154/163), with a mean age of 37.10 years (SD = 10.9). Most were single (65%, n = 106/163), had 11 years of education (52%, n = 85/163) and employed (88%, n = 144/163). Half reported using kratom for over >6 years (50%, n = 81/163), and 41% consumed >3 glasses of kratom daily (n = 67/163). Results from Chi-square analysis showed kratom initiation was associated with decreased prevalence of respiratory depression, constipation, physical pain, insomnia, depression, loss of appetite, craving, decreased sexual performance, weight loss and fatigue.

    CONCLUSIONS: Our findings indicate that kratom initiation (approximately 214.29 mg of mitragynine) was associated with significant decreases in the prevalence and severity of opioid adverse effects.

    Matched MeSH terms: Growth Hormone
  14. Albishtue AA, Yimer N, Zakaria MZA, Haron AW, Babji AS, Abubakar AA, et al.
    Theriogenology, 2019 Mar 01;126:310-319.
    PMID: 30605790 DOI: 10.1016/j.theriogenology.2018.12.026
    This study was conducted to determine the effect of edible bird's nest (EBN) supplement on uterine function and embryo-implantation rate. A total of 24 adult female rats, divided equally into four groups, were treated with different doses of EBN for 8 weeks. In the last week of treatment, intact fertile male rats were introduced into each group (three per group) for overnight for mating. On day 7 post-mating (post-implantation), blood samples were collected from the hearts of anaesthetised rats that were later sacrificed. The uteri were removed for assessment of embryo implantation rate, histological and electron microscopic examination, and immunohistochemical analyses. Results showed that as the concentration of EBN supplemented increased, the pregnancy and embryo implantation rates were also increased in the treated groups; significantly at G3 and G4. Although histological evaluation did not show much difference among the groups, scanning electron microscopic examination showed enhanced development of elongated microvilli and pinopods in G4. Results also revealed up-regulated expressions of epidermal growth factor (EGF), EGF receptor (EGFR), vascular endothelial growth factor (VEGF), proliferating cell nulear antigen (PCNA), and progesterone and estrogen receptors (P4R, E2R) in the uteri of treated groups. Moreover, plasma E2, P4, growth hormone (GH) and prolactin (P) levels were higher (p growth of ultrastructural pinopods that assist in embryo attachment with uterine epithelium, increased concentrations of E2, P4, GH and P levels, as well as increased AO capacities with reduced OS levels in the treated groups might reflect additional possible mechanisms by which EBN enhances embryo implantation rate and pregnancy success.
    Matched MeSH terms: Growth Hormone/blood
  15. Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA, et al.
    Poult Sci, 2019 Feb 01;98(2):745-752.
    PMID: 30265345 DOI: 10.3382/ps/pey419
    Growth hormones (GH) alone does not explain the growth rate in the chicken as growth in an animal is multi-factorial. Normal morphology of the intestinal villus and crypt, with adequate regulation of intestinal nutrient transporters, is essential to a healthy gut. Nutrition plays a significant role in gut health management, but information on the effect of dietary chitin and chitosan on gut morphology, gene expression of nutrient transporter, and serum levels of GH in broiler chickens is scanty. Thus, this study aimed at evaluating the comparative effect of dietary chitin and chitosan from cricket and shrimp on the small intestinal morphology, relative gene expression of intestinal nutrient transporters and serum level of GH in the broiler. A total of 150 day-old male Cobb500 broiler chicks were randomly allotted to one of the five treatment groups (n = 30). Treatment 1 was fed basal diet only, treatments 2 to 5 were fed a basal diet with 0.5 g cricket chitin, cricket chitosan, shrimp chitin, and shrimp chitosan, respectively, per kg diet. At days 21 and 42, duodenal and jejunal samples were assessed for structural morphology and jejunum for the relative gene expression of PepT1, EAAT3, SGLT1, and SGLT5 using quantitative real-time PCR. Results bared that dietary cricket chitosan and shrimp chitosan significantly (P < 0.05) improved jejunal villus height and reduced crypt depth without improving the body weight (BW). The gut morphology of birds under cricket chitin was poor and significantly (P < 0.05) different from other treated groups. Both the dietary chitin and chitosan at day 21 and only dietary chitosan at day 42 significantly (P < 0.05) down-regulated the relative mRNA expression of PepT1, EAAT3, SGLT1, and SGLT5 of broiler chickens. Treated groups differ non-significantly at both phases, while cricket chitin numerically increased the relative expression of PepT1, EAAT3, and SGLT1. Therefore, the potential of cricket chitin to improve BW and to up-regulate nutrient transporters is worthy of further exploration.
    Matched MeSH terms: Growth Hormone
  16. Mizrahi N, Gilon C, Atre I, Ogawa S, Parhar IS, Levavi-Sivan B
    PMID: 31354632 DOI: 10.3389/fendo.2019.00469
    Neurokinin B (NKB) and its cognate receptor (NK3R) are emerging as important components of the neuroendocrine regulation of reproduction. Unlike mammalian tac3, which encodes only one mature peptide (namely NKB), two mature peptides are predicted for each tac3 gene in fish and frogs. Therefore, it was designated as Neurokinin F (NKF). Hormone analogs with high and long-lasting biological activity are important tools for physiological and biological research; however, the availability of piscine-specific analogs is very limited. Therefore, we have developed specific NKB and NKF analogs based on the structure of the mammalian NKB analog-senktide. These analogs, specifically designed for longer half-lives by methylation of proteolysis sites, exhibited activity equal to those of the native NKB and NKF in short-term signal-transduction assays of tilapia NKB receptors. However, the analogs were found to be able to significantly increase the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and growth hormone (GH) in tilapia, as fast as 1 h after intraperitoneal (IP) injection. The impact of the analogs on LH and FSH secretion lasted longer compared to the effect of native peptides and salmon GnRH analog (sGnRHa). In addition, we harvested pituitaries 24 h post injection and measured LH, FSH and GH mRNA synthesis. Both analogs elevated mRNA levels of LH and GH, but only NKB analog increased FSH mRNA levels in the pituitary and all GnRH forms in the brain. NKB receptors were co-localized with all three types the GnRH neurons in tilapia brain in situ. We previously showed a direct effect of NKB at the pituitary level, and these new results suggest that the stronger impact of the NKB analog on GTH release is also due to an indirect effect through the activation of GnRH neurons. These results suggest that novel synthetic NKB analogs may serve as a tool for both research and agricultural purposes. Finally, the biological activity and regulatory role of NKB in tilapia brain and pituitary suggest that the NKB/NKBR system in fish is an important reproductive regulator in a similar way to the kisspeptin system in mammals.
    Matched MeSH terms: Growth Hormone
  17. Ogawa S, Liu X, Shepherd BS, Parhar IS
    Cell Tissue Res, 2018 Nov;374(2):349-365.
    PMID: 29934855 DOI: 10.1007/s00441-018-2870-6
    Ghrelin, a gut-brain peptide hormone, is implicated in a multiplicity of biological functions, including energy homeostasis and reproduction. Neuronal systems that are involved in energy homeostasis as well as reproduction traverse the hypothalamus; however, the mechanism by which they control energy homeostasis is not fully understood. The present study analyzes the anatomical relationship of neurons expressing gonadotropin-releasing hormone (GnRH), neuropeptide Y (NPY) and growth hormone-releasing hormone (GHRH) in a cichlid, tilapia (Oreochromis niloticus). Additionally, we examine in vivo effects of ghrelin on these hypothalamic neurons and plasma growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels. Double-immunofluorescence showed neuronal fiber associations between GnRH, NPY and GHRH in the brain and pituitary. Intracerebroventricular injection of ghrelin had no effect on numbers, soma size, or optical density of GnRH and NPY neurons, whereas the number of GHRH neurons was significantly decreased in the animals injected with ghrelin when compared to controls, which may indicate administered ghrelin promoted GHRH release. Plasma GH and pituitary GH mRNA levels were significantly increased in the animals injected with ghrelin. These results suggest that central administration of ghrelin primarily act on hypothalamic GHRH neurons to stimulate GH release from the pituitary in the tilapia.
    Matched MeSH terms: Growth Hormone; Growth Hormone-Releasing Hormone
  18. Ngim CF, Lai NM, Hong JY, Tan SL, Ramadas A, Muthukumarasamy P, et al.
    Cochrane Database Syst Rev, 2017 09 18;9:CD012284.
    PMID: 28921500 DOI: 10.1002/14651858.CD012284.pub2
    BACKGROUND: Thalassaemia is a recessively-inherited blood disorder that leads to anaemia of varying severity. In those affected by the more severe forms, regular blood transfusions are required which may lead to iron overload. Accumulated iron from blood transfusions may be deposited in vital organs including the heart, liver and endocrine organs such as the pituitary glands which can affect growth hormone production. Growth hormone deficiency is one of the factors that can lead to short stature, a common complication in people with thalassaemia. Growth hormone replacement therapy has been used in children with thalassaemia who have short stature and growth hormone deficiency.

    OBJECTIVES: To assess the benefits and safety of growth hormone therapy in people with thalassaemia.

    SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Our database and trial registry searches are current to 10 August 2017 and 08 August 2017, respectively.

    SELECTION CRITERIA: Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity.

    DATA COLLECTION AND ANALYSIS: Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The quality of the evidence was assessed using GRADE criteria.

    MAIN RESULTS: One parallel trial conducted in Turkey was included. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The quality of the evidence for all major outcomes was moderate, the main concern was imprecision of the estimates due to the small sample size leading to wide confidence intervals. Final height (cm) (the review's pre-specified primary outcome) and change in height were not assessed in the included trial. The trial reported no clear difference between groups in height standard deviation (SD) score after one year, mean difference (MD) -0.09 (95% confidence interval (CI) -0.33 to 0.15 (moderate quality evidence). However, modest improvements appeared to be observed in the following key outcomes in children receiving growth hormone therapy compared to control (moderate quality evidence): change between baseline and final visit in height SD score, MD 0.26 (95% CI 0.13 to 0.39); height velocity, MD 2.28 cm/year (95% CI 1.76 to 2.80); height velocity SD score, MD 3.31 (95% CI 2.43 to 4.19); and change in height velocity SD score between baseline and final visit, MD 3.41 (95% CI 2.45 to 4.37). No adverse effects of treatment were reported in either group; however, while there was no clear difference between groups in the oral glucose tolerance test at one year, fasting blood glucose was significantly higher in the growth hormone therapy group compared to control, although both results were still within the normal range, MD 6.67 mg/dL (95% CI 2.66 to 10.68). There were no data beyond the one-year trial period.

    AUTHORS' CONCLUSIONS: A small single trial contributed evidence of moderate quality that the use of growth hormone for a year may improve height velocity of children with thalassaemia although height SD score in the treatment group was similar to the control group. There are no randomised controlled trials in adults or trials that address the use of growth hormone therapy over a longer period and assess its effect on final height and quality of life. The optimal dosage of growth hormone and the ideal time to start this therapy remain uncertain. Large well-designed randomised controlled trials over a longer period with sufficient duration of follow up are needed.

    Matched MeSH terms: Human Growth Hormone/therapeutic use*
  19. Abdullah NRA, Jason WLC, Nasruddin AB
    PMID: 28567291 DOI: 10.1530/EDM-17-0029
    Pachydermoperiostosis is a very rare osteoarthrodermopathic disorder whose clinical and radiographic presentations may mimic those of acromegaly. In the evaluation of patients with acromegaloid appearances, pachydermoperiostosis should be considered as a differential diagnosis. In this article, we report a 17-year-old boy who presented with 2-year history of acral enlargement and facial appearance changes associated with joint pain and excessive sweating. He had been investigated extensively for acromegaly, and the final diagnosis was pachydermoperiostosis.

    LEARNING POINTS: There is a broad range of differential diagnosis for acromegaloid features such as acromegaly, pseudoacromegaly with severe insulin resistance, Marfan's syndrome, McCune-Albright and a rare condition called pachydermoperiostosis.Once a patient is suspected to have acromegaly, the first step is biochemical testing to confirm the clinical diagnosis, followed by radiologic testing to determine the cause of the excess growth hormone (GH) secretion. The cause is a somatotroph adenoma of the pituitary in over 95 percent of cases.The first step is measurement of a serum insulin-like growth factor 1 (IGF1). A normal serum IGF1 concentration is strong evidence that the patient does not have acromegaly.If the serum IGF1 concentration is high (or equivocal), serum GH should be measured after oral glucose administration. Inadequate suppression of GH after a glucose load confirms the diagnosis of acromegaly.Once the presence of excess GH secretion is confirmed, the next step is pituitary magnetic resonance imaging (MRI).Atypical presentation warrants revision of the diagnosis. This patient presented with clubbing with no gigantism, which is expected in adolescent acromegalics as the growth spurt and epiphyseal plate closure have not taken place yet.

    Matched MeSH terms: Growth Hormone; Growth Hormone-Secreting Pituitary Adenoma
  20. Dharan SS, Kamaruddin NA
    J ASEAN Fed Endocr Soc, 2017;32(2):169-172.
    PMID: 33442102 DOI: 10.15605/jafes.032.02.12
    Acromegaly is a rare disease with an annual incidence of 3 to 4 cases in a million.1 Diagnosis is often delayed due to the slow progression of the disease. Persistent elevation of growth hormone (GH) in acromegaly causes a reduction in life expectancy by 10 years. Aside from multiple cardiovascular, respiratory and metabolic co-morbidities, it has also been proven to cause an increased incidence of cancer. The main treatment of acromegaly is surgical excision of the functioning pituitary adenoma. Multiple comorbidities, including obstructive sleep apnea (OSA), left ventricular hypertrophy (LVH) and soft tissue swelling, make surgery complicated, if not impossible. Medical therapy to reduce comorbidities may be indicated in certain situations. Somatostatin receptor ligands (SRL) are able to reduce, and possibly normalize, IGF-1 levels.2 Reduction of insulin-like growth factor-1 (IGF-1), the main mediator of GH, is able to resolve headache, sweating, fatigue and soft tissue swelling, and also reduce ventricular hypertrophy. This case report illustrates the successful use of the SRL octreotide LAR in treating acromegaly. It also confirms the observation from several case series that thyroid cancer is the most common malignancy in acromegaly.
    Matched MeSH terms: Growth Hormone; Human Growth Hormone
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links