Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Abushaala NM, Elfituri AM, Zulkifli SZ
    Open Vet J, 2021 02 08;11(1):112-120.
    PMID: 33898292 DOI: 10.4314/ovj.v11i1.17
    Background: Several types of research have been recently carried out on the biological effects of TBTs, including investigations of genitals in invertebrates in response to exposure to TBTs in marine water.

    Aim: The objective of this research was to investigate the acute effects of tributyltin chloride (TBTCl) on gonads in the adult stage of Artemia salina by use normal histology and immunohistochemistry (IHC) (Caspase 3 and HSP70) to see specific apoptosis markers.

    Methods: After exposure of A. salina to different concentrations of TBTCl (25, 50, 100, 200, and 300 ng.l-1), 50 adult A. salina (25 male and 25 female) were selected randomly from each concentration to histologically study the gonads. The gonad tissue was sectioned (5 μm) and some slides were stained with hematoxylin and eosin and others were stained with IHC avidin-biotin complex, and were examined under a light microscope.

    Results: The results showed significant differences (p < 0.05) in histological lesions between different concentrations of TBTCl. The histological lesions in the testis and ovary section were undifferentiated cells, degenerating yolk globules, and follicle cells enveloping the oocyte which was then compared with control tissue, and these effects were found to be increased in females more than in males with the highest concentration of TBTCl. Immunohistochemistry (IHC) showed that positive immunostaining was observed in the testis and ovary as brownish deposits to Caspase 3 and HSP70 antibody after exposure to TBTCl, while the testis and ovary section in control tissue had no immunoreactivity to Caspase 3 and HSP70 antibody; these effects were profoundly increased with the highest concentration of TBTCl in females more than in males. Finally, the histological lesions and IHC (Caspase 3 and HSP70) revealed that the apoptosis and immune system stress of A. salina gonad tissue damage in females were more sensitive to TBTCl toxicity as compared to white males.

    Conclusion: In general, the present study aimed to observe the effects TBTCl on A. salina gonads by using histological sections and IHC (Caspase 3 and HSP70), which were evaluated for the first time and have been proven to possess an important function in apoptosis marker and immune system stress in Artemia. Finally, the specific mechanisms through which TBTCl affects A. salina Caspase 3 and HSP70 expression need further investigation.

    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  2. Al-Aqil A, Zulkifli I
    Poult Sci, 2009 Jul;88(7):1358-64.
    PMID: 19531704 DOI: 10.3382/ps.2008-00554
    An experiment was conducted to determine the effects of 2 types of housing systems and early age feed restriction on heat shock protein (hsp) 70 expression and blood parameters in broiler chickens subjected to road transportation. On d 1, female chicks were housed either in windowless environmentally controlled chambers (temperature was set at 32 degrees C on d 1 and gradually reduced to 23 degrees C by d 21; CH) or in conventional open-sided houses (OH) with cyclic temperatures (minimum, 24 degrees C; maximum, 34 degrees C). Equal number of chicks from each housing system were subjected to either ad libitum feeding or 60% feed restriction on d 4, 5, and 6 (FR). On d 42, all of the birds were crated and transported for 6 h. Birds raised in OH had smaller increases in heterophil:lymphocyte ratios and plasma corticosterone concentrations than those of CH. Subjecting birds to FR dampened heterophil:lymphocyte ratios and corticosterone reactions to transportation. After 4 h of transportation, the OH birds had greater hsp 70 expression than their CH counterparts. Within the CH, the FR chicks showed higher hsp 70 density than those of the ad libitum-fed group. Except for glucose, housing system had a negligible effect on serum levels of cholesterol, potassium, and chloride. Collectively, the results suggest that the improved tolerance to transport stress in OH and FR chicks could be associated with better hsp 70 expression.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  3. Tsai JW, Liew HJ, Jhang JJ, Hung SH, Meng PJ, Leu MY, et al.
    Fish Physiol Biochem, 2018 Apr;44(2):489-502.
    PMID: 29192359 DOI: 10.1007/s10695-017-0448-y
    The mosquitofish (Gambusia affinis) naturally inhabits freshwater (FW; 1-3‰) and seawater (SW; 28-33‰) ponds in constructed wetland. To explore the physiological status and molecular mechanisms for salinity adaptation of the mosquitofish, cytoprotective responses and osmoregulation were examined. In the field study, activation of protein quality control (PQC) mechanism through upregulation of the abundance of heat shock protein (HSP) 90 and 70 and ubiquitin-conjugated proteins was found in the mosquitofish gills from SW pond compared to the individuals of FW pond. The levels of aggregated proteins in mosquitofish gills had no significant difference between FW and SW ponds. Furthermore, the osmoregulatory responses revealed that the body fluid osmolality and muscle water contents of the mosquitofish from two ponds were maintained within a physiological range while branchial Na+/K+-ATPase (NKA) expression was higher in the individuals from SW than FW ponds. Subsequently, to further clarify whether the cellular stress responses and osmoregulation were mainly induced by hypertonicity, a laboratory salinity acclimation experiment was conducted. The results from the laboratory experiment were similar to the field study. Branchial PQC as well as NKA responses were induced by SW acclimation compared to FW-acclimated individuals. Taken together, induction of gill PQC and NKA responses implied that SW represents an osmotic stress for mosquitofish. Activation of PQC was suggested to provide an osmoprotection to prevent the accumulation of aggregated proteins. Moreover, an increase in branchial NKA responses for osmoregulatory adjustment was required for the physiological homeostasis of body fluid osmolality and muscle water content.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  4. Al Batran R, Al-Bayaty F, Abdulla MA, Al-Obaidi MM, Hajrezaei M, Hassandarvish P, et al.
    J Gastroenterol Hepatol, 2013 Aug;28(8):1321-9.
    PMID: 23611708 DOI: 10.1111/jgh.12229
    BACKGROUND AND AIM: Corchorus olitorius is a medicinal plant traditionally utilized as an antifertility, anti-convulsive, and purgative agent. This study aimed to evaluate the gastroprotective effect of an ethanolic extract of C. olitorius against ethanol-induced gastric ulcers in adult Sprague Dawley rats.

    METHODS: The rats were divided into seven groups according to their pretreatment: an untreated control group, an ulcer control group, a reference control group (20 mg/kg omeprazole), and four experimental groups (50, 100, 200, or 400 mg/kg of extract). Carboxymethyl cellulose was the vehicle for the agents. Prior to the induction of gastric ulcers with absolute ethanol, the rats in each group were pretreated orally. An hour later, the rats were sacrificed, and gastric tissues were collected to evaluate the ulcers and to measure enzymatic activity. The tissues were subjected to histological and immunohistochemical evaluations.

    RESULTS: Compared with the extensive mucosal damage in the ulcer control group, gross evaluation revealed a marked protection of the gastric mucosa in the experimental groups, with significantly preserved gastric wall mucus. In these groups, superoxide dismutase and malondialdehyde levels were significantly increased (P < 0.05) and reduced (P < 0.05), respectively. In addition to the histologic analyses (HE and periodic acid-Schiff staining), immunohistochemistry confirmed the protection through the upregulation of Hsp70 and the downregulation of Bax proteins. The gastroprotection of the experimental groups was comparable to that of the reference control medicine omeprazole.

    CONCLUSIONS: Our study reports the gastroprotective property of an ethanolic extract of C. olitorius against ethanol-induced gastric mucosal hemorrhagic lesions in rats.

    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  5. Iryani MTM, Sorgeloos P, Danish-Daniel M, Tan MP, Wong LL, Mok WJ, et al.
    Cell Stress Chaperones, 2020 Nov;25(6):1099-1103.
    PMID: 32383141 DOI: 10.1007/s12192-020-01113-0
    Females of the brine shrimp Artemia franciscana produce either free-swimming nauplii via ovoviviparous pathway of reproduction or encysted embryos, known as cysts, via oviparous pathway, in which biological processes are arrested. While previous study has shown a crucial role of ATP-dependent molecular chaperone, heat shock protein 70 (Hsp70) in protecting A. franciscana nauplii against various abiotic and abiotic stressors, the function of this protein in diapausing embryos and cyst development, however, remains unknown. RNA interference (RNAi) was applied in this study to examine the role of Hsp70 in cyst development and stress tolerance, with the latter performed by desiccation and freezing, a common method used for diapause termination in Artemia cysts. Hsp70 knockdown was apparent in cysts released from females that were injected with Hsp70 dsRNA. The loss of Hsp70 affected neither the development nor morphology of the cysts. The time between fertilization and cyst release from Artemia females injected with Hsp70 dsRNA was delayed slightly, but the differences were not significant when compared to the controls. However, the hatching percentage of cysts which lacks Hsp70 were reduced following desiccation and freezing. Taken together, these results indicated that Hsp70 possibly plays a role in the stress tolerance but not in the development of diapause-destined embryos of Artemia. This research makes fundamental contributions to our understanding of the role molecular chaperone Hsp70 plays in Artemia, an excellent model organism for diapause studies of the crustaceans.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  6. Al-Aqil A, Zulkifli I, Hair Bejo M, Sazili AQ, Rajion MA, Somchit MN
    Poult Sci, 2013 Jan;92(1):33-40.
    PMID: 23243228 DOI: 10.3382/ps.2012-02446
    An experiment was conducted to determine the effects of combining both pleasant and unpleasant contacts with human beings on physiology and behavior of broiler chickens. Birds were subjected to the following treatments: (i) received no physical or visual contact with humans (control); (ii) from d 1 to 28, chicks were individually stroked gently for 30 s once daily (PL); (iii) from d 1 to 28, chicks were picked up individually, suspended by both legs, exposed to recorded noise, and swung gently for 15 s once daily (UNPL); (iv) from d 1 to 14 and from d 15 to 28, chicks were subjected to PL and UNPL, respectively (PL-UNPL); and (v) from d 1 to 14 and from d 15 to 28, chicks were subjected to UNPL and PL, respectively (UNPL-PL). On d 42, birds from each treatment group were road-transported for 3 h. Heat shock protein (hsp) 70 expression, plasma levels of corticosterone, serum creatine kinase concentration, heterophil/lymphocyte ratios (HLR), and tonic immobility duration were determined pre- and posttransit. There were significant (P < 0.05) duration of transportation × human contact treatment interactions for HLR and hsp 70 density. Following transit, the PL chicks had significantly (P < 0.05) lower HLR and greater hsp 70 density than the other groups. The corticosterone of PL and UNPL chicks were lower than their control, PL-UNPL, and UNPL-PL counterparts. The PL and PL-UNPL treatments were effective in shortening tonic immobility duration significantly (P < 0.05). Except for UNPL-PL, the serum creatine kinase activity of PL was significantly lower than the other groups. In conclusion, subjecting birds to pleasant human contact reduced stress and fear reactions to transportation by enhancing the ability to express hsp 70 in the brain. Unpleasant human contact had adverse effect on the birds' response to transportation. Early age pleasant experience with humans failed to negate the adverse effects of subsequent unpleasant contact.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  7. Najafi P, Zulkifli I, Soleimani AF
    Poult Sci, 2018 Apr 01;97(4):1441-1447.
    PMID: 29462352 DOI: 10.3382/ps/pex364
    The aim of the current study was to elucidate whether inhibition of corticosterone (CORT) synthesis could modify stress response to feed deprivation and its possible interactions with feed restriction in the neonatal period in broiler chickens. Equal numbers of broiler chicks were subjected to either 60% feed restriction (60FR) or ad libitum (AL) on d 4, 5, and 6. On day 7, blood CORT, acute phase proteins (APP), interleukin-6 (IL-6) levels, and brain heat shock protein 70 (HSP70) expression were determined. On d 35, chickens in each early age feeding regimen were subjected to one of the following treatments: (i) ad libitum feeding (ALF), (ii) 24 h feed deprivation (SFR), or (iii) 24 h feed deprivation with intramuscular injection of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) at 100 mg/kg BW (SFR+DDT). The effect of SFR on CORT, APP, IL-6, and HSP 70 were determined on d 36. The results showed that subjecting chicks to 60FR significantly elevated CORT and brain HSP70 concentration compared to the AL group on d 7. The early feeding regimen had no significant effect on CORT, alpha-1 acid glycoprotein (AGP), ovotransferrin (OVT), ceruoplasmin (CP), IL-6, or brain HSP70 on d 36. The CORT, AGP, OVT, CP, IL-6, and brain HSP70 expression of SFR birds following 24 h of feed deprivation (d 36) were significantly higher than their ALF and SFR+DDT counterparts. Both ALF and SFR+DDT birds had similar values. Stress attributed to feed deprivation without concurrent increase in CORT had a negligible effect on serum levels of APP and IL-6 and brain HSP70 expression.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  8. Sinon SH, Rich AM, Parachuru VP, Firth FA, Milne T, Seymour GJ
    J Oral Pathol Med, 2016 Jan;45(1):28-34.
    PMID: 25865410 DOI: 10.1111/jop.12319
    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP).
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  9. Nikbin S, Panandam JM, Yaakub H, Murugaiyah M, Sazili AQ
    Anim. Reprod. Sci., 2014 May;146(3-4):176-81.
    PMID: 24674824 DOI: 10.1016/j.anireprosci.2014.03.001
    The semen quality of bucks affects the reproduction performance of the herd and is influenced by genetic and non-genetic factors. Heat shock protein 70 (HSP70) is considered as an important gene affecting semen quality traits. The objectives of this study are to find single nucleotide polymorphisms in HSP70 coding region and their association with semen quality traits on Boer and Boer cross bucks. DNA isolated from 53 goats (36 pure South African Boer and 17 Boer crosses) was subjected to PCR amplification of the exon 1 region of the caprine HSP70 gene. Single-strand conformation polymorphism (SSCP) was used to detect polymorphisms and the variant DNA fragments were sequenced. Two synonymous SNPs (74A>C (ss836187517) and 191C>G (ss836187518)) were detected. Qualities of fresh and post-thaw semen were evaluated for sperm concentration, semen volume, sperm motility and velocity traits, live sperm percentage, and abnormal sperm rate. The C allele of ss836187517 and G allele of ss836187518 were at higher frequencies in both the breeds. The C allele of ss836187517 appeared to be the favorable allele for semen concentration, progressive motility of fresh semen, and motility and sperm lateral head displacement of post-thaw semen. A negative overdominance was observed for ss836187517 alleles on velocity traits of post-thaw semen. The C allele of ss836187518 was favorable for sperm concentration and progressive motility. Results herein suggest that the SNPs in HSP70 may affect on semen quality in tropical regions and specially on the potential of semen for freezing.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  10. Tan JS, Ong Kc KC, Rhodes A
    Malays J Pathol, 2016 Aug;38(2):75-82.
    PMID: 27568663 MyJurnal
    Heat shock proteins (HSPs) are a family of evolutionary conserved proteins that work as molecular chaperones for cellular proteins essential for cell viability and growth as well as having numerous cyto-protective roles. They are sub-categorised based on their molecular weights; amongst which some of the most extensively studied are the HSP90 and HSP70 families. Important members of these two families; Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90), are the glucose regulated proteins (GRP). These stress-inducible chaperones possess distinct roles from that of the other HSPs, residing mostly in the endoplasmic reticulum and mitochondria, but they can also be translocated to other cellular locations. Their ability in adapting to stress conditions in the tumour microenvironment suggests novel functions in cancer. GRPs have been implicated in many crucial steps of carcinogenesis to include stabilization of oncogenic proteins, induction of tumour angiogenesis, inhibition of apoptosis and replicative senescence, and promotion of invasion and metastasis.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  11. Zulkifli I, Al-Aqil A, Omar AR, Sazili AQ, Rajion MA
    Poult Sci, 2009 Mar;88(3):471-6.
    PMID: 19211514 DOI: 10.3382/ps.2008-00287
    Two hundred thirty-five 1-d-old broiler chickens showing short or long tonic immobility responses were classified as low fear (LF) or high fear (HF) responders, respectively. On d 41, they were subjected to either crating or heat challenge (34 +/- 1 degrees C) for 3 h and its effect on plasma corticosterone concentration, heterophil/lymphocyte ratios, and heat shock protein (HSP) 70 expression in brain tissue were determined. Crating and heat exposure elevated heterophil/lymphocyte ratios in both LF and HF birds. Circulating corticosterone, however, was greater in HF than LF birds after crating and heat challenge. Although differences between fear responder group for HSP 70 were negligible before heat challenge, after 3 h of heat exposure, the response was greater for the HF than the LF group. Both LF and HF showed similar increases in HSP 70 after crating.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  12. Ng KB, Bustamam A, Sukari MA, Abdelwahab SI, Mohan S, Buckle MJ, et al.
    PMID: 23432947 DOI: 10.1186/1472-6882-13-41
    Boesenbergia rotunda (Roxb.) Schlecht (family zingiberaceae) is a rhizomatous herb that is distributed from north-eastern India to south-east Asia, especially in Indonesia, Thailand and Malaysia. Previous research has shown that the crude extract of this plant has cytotoxic properties. The current study examines the cytotoxic properties of boesenbergin A isolated from Boesenbergia rotunda.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  13. Soleimani AF, Zulkifli I, Omar AR, Raha AR
    Poult Sci, 2011 Jul;90(7):1435-40.
    PMID: 21673158 DOI: 10.3382/ps.2011-01381
    Domestic animals have been modified by selecting individuals exhibiting desirable traits and culling the others. To investigate the alterations introduced by domestication and selective breeding in heat stress response, 2 experiments were conducted using Red Jungle Fowl (RJF), village fowl (VF), and commercial broilers (CB). In experiment 1, RJF, VF, and CB of a common chronological age (30 d old) were exposed to 36 ± 1°C for 3 h. In experiment 2, RJF, VF, and CB of common BW (930 ± 15 g) were subjected to similar procedures as in experiment 1. Heat treatment significantly increased body temperature, heterophil:lymphocyte ratio, and plasma corticosterone concentration in CB but not in VF and RJF. In both experiments and irrespective of stage of heat treatment, RJF showed lower heterophil:lymphocyte ratio, higher plasma corticosterone concentration, and higher heat shock protein 70 expression than VF and CB. It can be concluded that selective breeding for phenotypic traits in the domestication process has resulted in alterations in the physiology of CB and concomitantly the ability to withstand high ambient temperature compared with RJF and VF. In other words, domestication and selective breeding are leading to individuals that are more susceptible to stress rather than resistant. It is also apparent that genetic differences in body size and age per se may not determine breed or strain variations in response to heat stress.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  14. Soleimani AF, Zulkifli I, Hair-Bejo M, Omar AR, Raha AR
    Poult Sci, 2012 Feb;91(2):340-5.
    PMID: 22252346 DOI: 10.3382/ps.2011-01703
    Environmental stressors may influence chicken performance and susceptibility to pathogens, such as Salmonella enteritidis. This study was conducted to determine the effects of heat shock protein (Hsp)70 expression on resistance to Salmonella enteritidis infection in broiler chickens subjected to heat exposure. Chicks were divided into 3 feeding regimens: ad libitum feeding (control); 60% feed restriction on d 4, 5, and 6 (FR60); and 60% feed restriction on d 4, 5, and 6 plus 1,500 mg/kg of quercetin (FR60Q). On d 35, all of the chickens were individually inoculated with 1 mL of Salmonella enteritidis (1.5 × 10(8) cfu/bird) and exposed to an ambient temperature of 37 ± 1°C and 70% RH for 3 h/d. The FR60 and FR60Q chickens had significantly lower Salmonella enteritidis colonization and lower Hsp70 expression than that of the control chickens following the heat exposure period. The least colonization was observed in the FR60Q group (1.38 log(10) cfu/g in the spleen and 1.96 log(10) cfu/g in the cecal content) and the highest was in the control group (2.1 log(10) cfu/g in the spleen and 4.42 log(10) cfu/g in the cecal content). It appears that neonatal feed restriction can enhance resistance to Salmonella enteritidis colonization in heat-stressed broiler chicks, and the underlying mechanism could be associated with the lower expression of Hsp70.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  15. Soleimani AF, Zulkifli I, Omar AR, Raha AR
    PMID: 22036750 DOI: 10.1016/j.cbpa.2011.10.003
    Physiological responses to social isolation stress were compared in 56-day-old male Japanese quail. Birds were fed pretreated diets for 3 days as follows: (i) Basal diet (control); (ii) Basal diet+1500 mg/kg metyrapone (BM); (iii) Basal diet+30 mg/kg corticosterone (BCO); (iv) Basal diet+250 mg/kg ascorbic acid (BC); (v) Basal diet+250 mg/kg α-tocopherol (BE); (vi) Basal diet+250 mg/kg ascorbic acid and 250 mg/kg α-tocopherol (BCE). The birds were subsequently socially isolated in individual opaque brown paper box for 2 hours. Plasma corticosterone (CORT) concentration and heart and brain heat shock protein 70 (Hsp 70) expressions were determined before stress and immediately after stress. Two hours of isolation stress elevated CORT concentration significantly in the control and BE birds but not in the BC, BCE and BM birds. There was a significant reduction in CORT concentration after isolation stress in the BCO group. Isolation stress increased Hsp 70 expression in the brain and heart of control and BM birds. However, brain and heart Hsp 70 expressions were not significantly altered in the isolated BC, BCE and BE birds. Although, the CORT concentration of BM birds was not affected by isolation stress, Hsp70 expression in both brain and heart were significantly increased. Moreover, exogenous corticosterone supplementation did not result in elevation of Hsp 70 expression. It can be concluded that, although Hsp 70 induction had not been directly affected by CORT concentration, it may be modulated by the HPA axis function via activation of ACTH.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  16. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  17. Oskoueian E, Abdullah N, Idrus Z, Ebrahimi M, Goh YM, Shakeri M, et al.
    PMID: 25273634 DOI: 10.1186/1472-6882-14-368
    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  18. Lim WK, Kanelakis KC, Neubig RR
    Cell Signal, 2013 Feb;25(2):389-96.
    PMID: 23153586 DOI: 10.1016/j.cellsig.2012.11.002
    G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha(2A) adrenergic receptor (α(2A)-R) by the ubiquitous stress-inducible 70kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α(2A)-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α(2A)-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α(2A)-R-catalyzed [(35)S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine(1A) receptor (5-HT(1A)-R). In heat-stressed CHO cells, the α(2A)-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α(2A)-R compared to the 5-HT(1A)-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  19. Zulaziz N, Azhim A, Himeno N, Tanaka M, Satoh Y, Kinoshita M, et al.
    Hum. Cell, 2015 Oct;28(4):159-66.
    PMID: 25997703 DOI: 10.1007/s13577-015-0118-2
    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  20. Ibrahim MY, Mohd Hashim N, Mohan S, Abdulla MA, Abdelwahab SI, Kamalidehghan B, et al.
    Drug Des Devel Ther, 2014;8:2193-211.
    PMID: 25395836 DOI: 10.2147/DDDT.S66574
    BACKGROUND: Cratoxylum arborescens has been used traditionally in Malaysia for the treatment of various ailments.

    METHODS: α-Mangostin (AM) was isolated from C. arborescens and its cell death mechanism was investigated. AM-induced cytotoxicity was observed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acridine orange/propidium iodide staining and annexin V were used to detect cells in early phases of apoptosis. High-content screening was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release. The role of caspases-3/7, -8, and -9, reactive oxygen species, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. To determine the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-κB) was also analyzed.

    RESULTS: Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05) concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-κB from cytoplasm to nucleus.

    CONCLUSION: Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-κB and HSP70 signaling pathways.

    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links