Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Daszak P, Tabor GM, Kilpatrick AM, Epstein J, Plowright R
    Ann N Y Acad Sci, 2004 Oct;1026:1-11.
    PMID: 15604464
    The last three decades have seen an alarming number of high-profile outbreaks of new viruses and other pathogens, many of them emerging from wildlife. Recent outbreaks of SARS, avian influenza, and others highlight emerging zoonotic diseases as one of the key threats to global health. Similar emerging diseases have been reported in wildlife populations, resulting in mass mortalities, population declines, and even extinctions. In this paper, we highlight three examples of emerging pathogens: Nipah and Hendra virus, which emerged in Malaysia and Australia in the 1990s respectively, with recent outbreaks caused by similar viruses in India in 2000 and Bangladesh in 2004; West Nile virus, which emerged in the New World in 1999; and amphibian chytridiomycosis, which has emerged globally as a threat to amphibian populations and a major cause of amphibian population declines. We discuss a new, conservation medicine approach to emerging diseases that integrates veterinary, medical, ecologic, and other sciences in interdisciplinary teams. These teams investigate the causes of emergence, analyze the underlying drivers, and attempt to define common rules governing emergence for human, wildlife, and plant EIDs. The ultimate goal is a risk analysis that allows us to predict future emergence of known and unknown pathogens.
    Matched MeSH terms: Hendra Virus/pathogenicity
  2. Amaya M, Broder CC
    Annu Rev Virol, 2020 09 29;7(1):447-473.
    PMID: 32991264 DOI: 10.1146/annurev-virology-021920-113833
    Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
    Matched MeSH terms: Hendra Virus/immunology*
  3. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al.
    Antiviral Res, 2013 Oct;100(1):8-13.
    PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012
    Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
    Matched MeSH terms: Hendra Virus/drug effects*; Hendra Virus/genetics; Hendra Virus/immunology
  4. Ong KC, Wong KT
    Brain Pathol, 2015 Sep;25(5):605-13.
    PMID: 26276024 DOI: 10.1111/bpa.12278
    The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
    Matched MeSH terms: Hendra Virus/pathogenicity
  5. Eaton BT, Broder CC, Wang LF
    Curr Mol Med, 2005 Dec;5(8):805-16.
    PMID: 16375714
    Within the past decade a number of new zoonotic paramyxoviruses emerged from flying foxes to cause serious disease outbreaks in man and livestock. Hendra virus was the cause of fatal infections of horses and man in Australia in 1994, 1999 and 2004. Nipah virus caused encephalitis in humans both in Malaysia in 1998/99, following silent spread of the virus in the pig population, and in Bangladesh from 2001 to 2004 probably as a result of direct bat to human transmission and spread within the human population. Hendra and Nipah viruses are highly pathogenic in humans with case fatality rates of 40% to 70%. Their genetic constitution, virulence and wide host range make them unique paramyxoviruses and they have been given Biosecurity Level 4 status in a new genus Henipavirus within the family Paramyxoviridae. Recent studies on the virulence, host range and cell tropisms of henipaviruses provide insights into the unique biological properties of these emerging human pathogens and suggest approaches for vaccine development and therapeutic countermeasures.
    Matched MeSH terms: Hendra Virus/classification; Hendra Virus/pathogenicity*
  6. Wong KT, Tan CT
    PMID: 22427144 DOI: 10.1007/82_2012_205
    The clinicopathological features of human Nipah virus and Hendra virus infections appear to be similar. The clinical manifestations may be mild, but if severe, includes acute encephalitic and pulmonary syndromes with a high mortality. The pathological features in human acute henipavirus infections comprise vasculopathy (vasculitis, endothelial multinucleated syncytia, thrombosis), microinfarcts and parenchymal cell infection in the central nervous system, lung, kidney and other major organs. Viral inclusions, antigens, nucleocapsids and RNA are readily demonstrated in blood vessel wall and numerous types of parenchymal cells. Relapsing henipavirus encephalitis is a rare complication reported in less than 10% of survivors of the acute infection and appears to be distinct from the acute encephalitic syndrome. Pathological evidence suggests viral recrudescence confined to the central nervous system as the cause.
    Matched MeSH terms: Hendra Virus/pathogenicity; Hendra Virus/physiology
  7. Luby SP, Gurley ES
    PMID: 22752412 DOI: 10.1007/82_2012_207
    All seven recognized human cases of Hendra virus (HeV) infection have occurred in Queensland, Australia. Recognized human infections have all resulted from a HeV infected horse that was unusually efficient in transmitting the virus and a person with a high exposure to infectious secretions. In the large outbreak in Malaysia where Nipah virus (NiV) was first identified, most human infections resulted from close contact with NiV infected pigs. Outbreak investigations in Bangladesh have identified drinking raw date palm sap as the most common pathway of NiV transmission from Pteropus bats to people, but person-to-person transmission of NiV has been repeatedly identified in Bangladesh and India. Although henipaviruses are not easily transmitted to people, these newly recognized, high mortality agents warrant continued scientific attention.
    Matched MeSH terms: Hendra Virus/isolation & purification*; Hendra Virus/pathogenicity
  8. Chua KB
    PMID: 22782307 DOI: 10.1007/82_2012_218
    Until the Nipah outbreak in Malaysia in 1999, knowledge of human infections with the henipaviruses was limited to the small number of cases associated with the emergence of Hendra virus in Australia in 1994. The Nipah outbreak in Malaysia alerted the global public health community to the severe pathogenic potential and widespread distribution of these unique paramyxoviruses. This chapter briefly describes the initial discovery of Nipah virus and the challenges encountered during the initial identification and characterisation of the aetiological agent responsible for the outbreak of febrile encephalitis. The initial attempts to isolate Nipah virus from the bat reservoir host are also described.
    Matched MeSH terms: Hendra Virus/isolation & purification; Hendra Virus/pathogenicity
  9. Sun W, McCrory TS, Khaw WY, Petzing S, Myers T, Schmitt AP
    J Virol, 2014 Nov;88(22):13099-110.
    PMID: 25210190 DOI: 10.1128/JVI.02103-14
    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections.
    Matched MeSH terms: Hendra Virus/physiology*
  10. Escaffre O, Borisevich V, Carmical JR, Prusak D, Prescott J, Feldmann H, et al.
    J Virol, 2013 Mar;87(6):3284-94.
    PMID: 23302882 DOI: 10.1128/JVI.02576-12
    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.
    Matched MeSH terms: Hendra Virus/immunology*; Hendra Virus/pathogenicity*
  11. Mire CE, Satterfield BA, Geisbert TW
    Methods Mol Biol, 2023;2682:159-173.
    PMID: 37610581 DOI: 10.1007/978-1-0716-3283-3_12
    Hendra and Nipah viruses are henipaviruses that have caused lethal human disease in Australia and Malaysia, Bangladesh, India, and the Philippines, respectively. These viruses are considered Category C pathogens by the US Centers for Disease Control. Nipah virus was recently placed on the World Health Organization Research and Development Blueprint Roadmaps for vaccine and therapeutic development. Given the infrequent and unpredictable nature of henipavirus outbreaks licensure of vaccines and therapeutics will likely require an animal model to demonstrate protective efficacy against henipavirus disease. Studies have shown that nonhuman primates are the most accurate model of human henipavirus disease and would be an important component of any application for licensure of a vaccine or antiviral drug under the US FDA Animal Rule. Nonhuman primate model selection and dosing are discussed regarding vaccine and therapeutic studies against henipaviruses.
    Matched MeSH terms: Hendra Virus*
  12. Eaton BT, Broder CC, Middleton D, Wang LF
    Nat Rev Microbiol, 2006 Jan;4(1):23-35.
    PMID: 16357858
    Hendra virus and Nipah virus are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These features led to their classification into the new genus Henipavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. This review provides an overview of henipaviruses and the types of infection they cause, and describes how studies on the structure and function of henipavirus proteins expressed from cloned genes have provided insights into the unique biological properties of these emerging human pathogens.
    Matched MeSH terms: Hendra Virus/classification; Hendra Virus/genetics; Hendra Virus/pathogenicity*
  13. Leon AJ, Borisevich V, Boroumand N, Seymour R, Nusbaum R, Escaffre O, et al.
    PLoS Negl Trop Dis, 2018 03;12(3):e0006343.
    PMID: 29538374 DOI: 10.1371/journal.pntd.0006343
    Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.
    Matched MeSH terms: Hendra Virus/immunology; Hendra Virus/pathogenicity
  14. Fischer K, Diederich S, Smith G, Reiche S, Pinho Dos Reis V, Stroh E, et al.
    PLoS One, 2018;13(4):e0194385.
    PMID: 29708971 DOI: 10.1371/journal.pone.0194385
    Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
    Matched MeSH terms: Hendra Virus/metabolism*
  15. Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, et al.
    Sci Transl Med, 2012 Aug 08;4(146):146ra107.
    PMID: 22875827 DOI: 10.1126/scitranslmed.3004241
    In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease. Thus, the AGM represents a reliable disease model for vaccine and therapeutic efficacy testing. We show that vaccination of AGMs with a recombinant subunit vaccine based on the henipavirus attachment G glycoprotein affords complete protection against subsequent NiV infection with no evidence of clinical disease, virus replication, or pathology observed in any challenged subjects. Success of the recombinant subunit vaccine in nonhuman primates provides crucial data in supporting its further preclinical development for potential human use.
    Matched MeSH terms: Hendra Virus/immunology*
  16. Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, et al.
    Am J Trop Med Hyg, 2011 Nov;85(5):946-51.
    PMID: 22049055 DOI: 10.4269/ajtmh.2011.10-0567
    Bats of the genus Pteropus have been identified as the reservoir hosts for the henipaviruses Hendra virus (HeV) and Nipah virus (NiV). The aim of these studies was to assess likely mechanisms for henipaviruses transmission from bats. In a series of experiments, Pteropus bats from Malaysia and Australia were inoculated with NiV and HeV, respectively, by natural routes of infection. Despite an intensive sampling strategy, no NiV was recovered from the Malaysian bats and HeV was reisolated from only one Australian bat; no disease was seen. These experiments suggest that opportunities for henipavirus transmission may be limited; therefore, the probability of a spillover event is low. For spillover to occur, a range of conditions and events must coincide. An alternate assessment framework is required if we are to fully understand how this reservoir host maintains and transmits not only these but all viruses with which it has been associated.
    Matched MeSH terms: Hendra Virus/genetics; Hendra Virus/immunology; Hendra Virus/isolation & purification*
  17. Lou Z, Xu Y, Xiang K, Su N, Qin L, Li X, et al.
    FEBS J, 2006 Oct;273(19):4538-47.
    PMID: 16972940
    The Nipah and Hendra viruses are highly pathogenic paramyxoviruses that recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These characteristics have led to their classification into the new genus Henpavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. The fusion protein, an enveloped glycoprotein essential for viral entry, belongs to the family of class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions associate to form a fusion-active hairpin conformation that juxtaposes the viral and cellular membranes to facilitate membrane fusion and enable subsequent viral entry. The Hendra and Nipah virus fusion core proteins were crystallized and their structures determined to 2.2 A resolution. The Nipah and Hendra fusion core structures are six-helix bundles with three HR2 helices packed against the hydrophobic grooves on the surface of a central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. Because of the high level of conservation in core regions, it is proposed that the Nipah and Hendra virus fusion cores can provide a model for membrane fusion in all paramyxoviruses. The relatively deep grooves on the surface of the central coiled coil represent a good target site for drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation.
    Matched MeSH terms: Hendra Virus/chemistry*
  18. Prasad AN, Woolsey C, Geisbert JB, Agans KN, Borisevich V, Deer DJ, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S436-S447.
    PMID: 32022850 DOI: 10.1093/infdis/jiz613
    BACKGROUND: The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are capable of causing severe and often lethal respiratory and/or neurologic disease in animals and humans. Given the sporadic nature of henipavirus outbreaks, licensure of vaccines and therapeutics for human use will likely require demonstration of efficacy in animal models that faithfully reproduce the human condition. Currently, the African green monkey (AGM) best mimics human henipavirus-induced disease.

    METHODS: The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses.

    RESULTS: In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1.

    CONCLUSION: The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.

    Matched MeSH terms: Hendra Virus*
  19. Hegde ST, Lee KH, Styczynski A, Jones FK, Gomes I, Das P, et al.
    J Infect Dis, 2024 Mar 14;229(3):733-742.
    PMID: 37925626 DOI: 10.1093/infdis/jiad467
    Nipah virus Bangladesh (NiVB) is a bat-borne zoonosis transmitted between people through the respiratory route. The risk posed by related henipaviruses, including Hendra virus (HeV) and Nipah virus Malaysia (NiVM), is less clear. We conducted a broad search of the literature encompassing both human infections and animal models to synthesize evidence about potential for person-to-person spread. More than 600 human infections have been reported in the literature, but information on viral shedding was only available for 40 case-patients. There is substantial evidence demonstrating person-to-person transmission of NiVB, and some evidence for NiVM. Less direct evidence is available about the risk for person-to-person transmission of HeV, but animals infected with HeV shed more virus in the respiratory tract than those infected with NiVM, suggesting potential for transmission. As the group of known henipaviruses continues to grow, shared protocols for conducting and reporting from human investigations and animal experiments are urgently needed.
    Matched MeSH terms: Hendra Virus*
  20. Sherrini BA, Chong TT
    Med J Malaysia, 2014 Aug;69 Suppl A:103-11.
    PMID: 25417957
    Between September 1998 to May 1999, Malaysia and Singapore were hit by an outbreak of fatal encephalitis caused by a novel virus from the paramyxovirus family. This virus was subsequently named as Nipah virus, after the Sungei Nipah village in Negeri Sembilan, where the virus was first isolated. The means of transmission was thought to be from bats-topigs and subsequently pigs-to-human. Since 2001, almost yearly outbreak of Nipah encephalitis has been reported from Bangladesh and West Bengal, India. These outbreaks were characterized by direct bats-to-human, and human-to-human spread of infection. Nipah virus shares many similar characteristics to Hendra virus, first isolated in an outbreak of respiratory illness involving horses in Australia in 1994. Because of their homology, a new genus called Henipavirus (Hendra + Nipah) was introduced. Henipavirus infection is a human disease manifesting most often as acute encephalitis (which may be relapsing or late-onset) or pneumonia, with a high mortality rate. Pteropus bats act as reservoir for the virus, which subsequently lead to human spread. Transmission may be from consumption of food contaminated by bats secretion, contact with infected animals, or human-to-human spread. With wide geographical distribution of Pteropus bats, Henipavirus infection has become an important emerging human infection with worldwide implication.
    Matched MeSH terms: Hendra Virus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links