Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Dahham SS, Tabana Y, Asif M, Ahmed M, Babu D, Hassan LE, et al.
    Int J Mol Sci, 2021 Sep 29;22(19).
    PMID: 34638895 DOI: 10.3390/ijms221910550
    Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  2. Lim CS, Rosli R, Seow HF, Chong PP
    Int J Med Microbiol, 2011 Aug;301(6):536-46.
    PMID: 21371935 DOI: 10.1016/j.ijmm.2010.12.002
    Systemic infections of Candida albicans, the most prevalent fungal pathogen in humans, are on the rise in recent years. However, the exact mode of pathogenesis of this fungus is still not well elucidated. Previous studies using C. albicans mutants locked into the yeast form via gene deletion found that this form was avirulent and did not induce significant differential expression of host genes in vitro. In this study, a high density of C. albicans was used to infect human umbilical vein endothelial cells (HUVEC), resulting in yeast-form infections, whilst a low density of C. albicans resulted in hyphae infections. Transcriptional profiling of HUVEC response to these infections showed that high densities of C. albicans induced a stronger, broader transcriptional response from HUVEC than low densities of C. albicans infection. Many of the genes that were significantly differentially expressed were involved in apoptosis and cell death. In addition, conditioned media from the high-density infections caused a significant reduction in HUVEC viability, suggesting that certain molecules released during C. albicans and HUVEC interactions were capable of causing cell death. This study has shown that C. albicans yeast-forms, at high densities, cannot be dismissed as avirulent, but instead could possibly contribute to C. albicans pathogenesis.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism*
  3. Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, et al.
    Eur J Pharmacol, 2015 Feb 15;749:1-11.
    PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015
    2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  4. Rahman R, Murthi P, Singh H, Gurusinghe S, Mockler JC, Lim R, et al.
    Pregnancy Hypertens, 2016 Oct;6(4):259-262.
    PMID: 27939463 DOI: 10.1016/j.preghy.2016.09.001
    Hydroxychloroquine is an anti-malarial drug which, due to its anti-inflammatory and immunomodulatory effects, is widely used for the treatment of autoimmune diseases. In a model of systemic lupus erythematosus hydroxychloroquine has been shown to exert protective endothelial effects. In this study, we aimed to investigate whether hydroxychloroquine was endothelial protective in an in vitro model of TNF-α and preeclamptic serum induced dysfunction. We showed that hydroxychloroquine significantly reduced the production of TNF-α and preeclamptic serum induced endothelin-1 (ET-1). Hydroxychloroquine also significantly mitigated TNF-α induced impairment of angiogenesis. These findings support the further assessment of hydroxychloroquine as an adjuvant therapy in preeclampsia.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  5. Aisha AF, Ismail Z, Abu-Salah KM, Siddiqui JM, Ghafar G, Abdul Majid AM
    PMID: 23842450 DOI: 10.1186/1472-6882-13-168
    Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  6. Tabana YM, Hassan LE, Ahamed MB, Dahham SS, Iqbal MA, Saeed MA, et al.
    Microvasc Res, 2016 09;107:17-33.
    PMID: 27133199 DOI: 10.1016/j.mvr.2016.04.009
    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  7. Ugusman A, Zakaria Z, Chua KH, Nordin NA, Abdullah Mahdy Z
    ScientificWorldJournal, 2014;2014:169370.
    PMID: 25093198 DOI: 10.1155/2014/169370
    Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC). HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H₂O₂; treatment with 300 μM rutin; and concomitant induction with rutin and H₂O₂ for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P < 0.01). In the oxidative stress-induced HUVEC, rutin successfully induced cells' NO production (P < 0.01). Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P < 0.05), eNOS protein synthesis (P < 0.01), and eNOS activity (P < 0.05). Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF) in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism*
  8. Chai HJ, Kiew LV, Chin Y, Norazit A, Mohd Noor S, Lo YL, et al.
    Int J Nanomedicine, 2017;12:577-591.
    PMID: 28144140 DOI: 10.2147/IJN.S111284
    BACKGROUND AND PURPOSE: Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier.

    EXPERIMENTAL APPROACH: 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF).

    RESULTS: In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state.

    CONCLUSION/IMPLICATIONS: The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.

    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  9. Fariha MM, Chua KH, Tan GC, Lim YH, Hayati AR
    J Cell Mol Med, 2013 May;17(5):681-92.
    PMID: 23551495 DOI: 10.1111/jcmm.12051
    Human chorion-derived stem cells (hCDSC) were previously shown to demonstrate multipotent properties with promising angiogenic characteristics in monolayer-cell culture system. In our study, we investigated the angiogenic capability of hCDSC in 3-dimensional (3D) in vitro and in vivo angiogenic models for the purpose of future application in the treatment of ischaemic diseases. Human CDSC were evaluated for angiogenic and endogenic genes expressions by quantitative PCR. Growth factors secretions were quantified using ELISA. In vitro and in vivo vascular formations were evaluated by histological analysis and confocal microscopic imaging. PECAM-1(+) and vWF(+) vascular-like structures were observed in both in vitro and in vivo angiogenesis models. High secretions of VEGF and bFGF by hCDSC with increased expressions of angiogenic and endogenic genes suggested the possible angiogenic promoting mechanisms by hCDSC. The cooperation of hCDSC with HUVECS to generate vessel-like structures in our systems is an indication that there will be positive interactions of hCDSC with existing endothelial cells when injected into ischaemic tissues. Hence, hCDSC is suggested as the novel approach in the future treatment of ischaemic diseases.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  10. Chan YW, Siow KS, Ng PY, Gires U, Yeop Majlis B
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:861-871.
    PMID: 27524089 DOI: 10.1016/j.msec.2016.07.040
    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of <1nm. ppCar had a static water contact angle of 78°, even after 10days of air aging and it maintained its stability throughout 24h of LB broth immersion. ppCar showed promising results in the live-dead fluorescence assay and crystal violet assay. The biofilm assay showed an effective reduction of E. coli and S. aureus bacteria by 86% and 84% respectively. ppCar is also shown to rupture the bacteria membrane for its bactericidal effects. The cytotoxicity test indicated that the coating is not cytotoxic to the human cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism*
  11. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  12. Choy KW, Lau YS, Murugan D, Vanhoutte PM, Mustafa MR
    J. Pharmacol. Exp. Ther., 2018 03;364(3):420-432.
    PMID: 29259041 DOI: 10.1124/jpet.117.245217
    Inflammatory injury of the endothelium leads to apoptosis and endothelial dysfunction. The current study explored the effect and mechanisms of paeonol in inflammation-induced apoptosis and endothelial dysfunction induced by lipopolysaccharides (LPSs). The effects of paeonol on LPS-induced inflammatory injury were assessed by Western blotting, flow cytometry and reactive oxygen species (ROS) measurement in human umbilical vein endothelial cells (HUVECs) and C57BL/6J mice. Vascular reactivity of isolated mouse aortae was examined using wire myographs. The exposure of HUVECs to LPS increased the protein presence of Toll-like receptor 4 (TLR4), bone morphogenic protein 4 (BMP4), BMP receptor type 1A, nicotinamide adenine dinucleotide phosphate oxidase subunit 2, mitogen-activated protein kinase (MAPK), inducible nitric oxide synthase (iNOS), and cleaved caspase 3, as well as decreased it in phosphorylated endothelial nitric oxide synthase; these effects were prevented by treatment with paeonol. Similarly, cotreatment with paeonol reversed BMP4-induced apoptosis in HUVECs. Relaxation in response to the endothelium-dependent vasodilator acetylcholine were impaired in mouse aortae after exposure to LPSs; this endothelial dysfunction was reversed by cotreatment with paeonol, noggin (a BMP4 inhibitor), TAK242 (TLR4 antagonist), apocynin (an ROS scavenger), MAPK inhibitors, and AG (an iNOS inhibitor). BMP4 small interfering RNAs (siRNAs) abolished LPS-induced upregulation of BMP4 and cleaved caspase 3 protein, but not in cells treated with TLR4 siRNA and vice versa. The silencing of TLR4 and BMP4 abolished the inhibitory effects of paeonol on LPS-induced activation of cleaved caspase 3. The present results demonstrate that paeonol reduces LPS-induced endothelial dysfunction and apoptosis by inhibiting TLR4 and BMP4 signaling independently.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  13. Ng CT, Fong LY, Low YY, Ban J, Hakim MN, Ahmad Z
    Physiol Res, 2016 12 13;65(6):1053-1058.
    PMID: 27539106
    The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-gamma-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-gamma significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-gamma also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-gamma significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-gamma-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-gamma-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-gamma-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-gamma-induced increased HUVECs permeability is partly related to the inhibition of NO production.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism*
  14. Wong JE, Zainal N, AbuBakar S, Tan KK
    J Vis Exp, 2023 May 05.
    PMID: 37212555 DOI: 10.3791/64887
    Endothelial cells line the inner surface of all blood and lymphatic vessels, creating a semi-permeable barrier regulating fluid and solute exchange between blood or lymph and their surrounding tissues. The ability of a virus to cross the endothelial barrier is an important mechanism that facilitates virus dissemination in the human body. Many viruses are reported to alter endothelial permeability and/or cause endothelial cell barrier disruption during infection, which is able to cause vascular leakage. The current study describes a real-time cell analysis (RTCA) protocol, using a commercial real-time cell analyzer to monitor endothelial integrity and permeability changes during Zika virus (ZIKV) infection of the human umbilical vein endothelial cells (HUVECs). The impedance signals recorded before and after ZIKV infection were translated to cell index (CI) values and analyzed. The RTCA protocol allows the detection of transient effects in the form of cell morphological changes during a viral infection. This assay could also be useful for studying changes in the vascular integrity of HUVECs in other experimental setups.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  15. Jong HL, Mustafa MR, Vanhoutte PM, AbuBakar S, Wong PF
    Physiol Genomics, 2013 Apr 1;45(7):256-67.
    PMID: 23362143 DOI: 10.1152/physiolgenomics.00071.2012
    MicroRNAs (miRNAs) regulate various cellular processes. While several genes associated with replicative senescence have been described in endothelial cells, miRNAs that regulate these genes remain largely unknown. The present study was designed to identify miRNAs associated with replicative senescence and their target genes in human umbilical vein endothelial cells (HUVECs). An integrated miRNA and gene profiling approach revealed that hsa-miR-299-3p is upregulated in senescent HUVECs compared with the young cells, and one of its target genes could be IGF1. IGF1 was upregulated in senescent compared with young HUVECs, and knockdown of hsa-miR-299-3p dose-dependently increased the mRNA expression of IGF1, more significantly observed in the presenescent cells (passage 19) compared with the senescent cells (passage 25). Knockdown of hsa-miR-299-3p also resulted in significant reduction in the percentage of cells positively stained for senescence-associated β-galactosidase and increases in cell viability measured by MTT assay but marginal increases in cell proliferation and cell migration capacity measured by real-time growth kinetics analysis. Moreover, knockdown of hsa-miR-299-3p also increased proliferation of cells treated with H2O2 to induce senescence. These findings suggest that hsa-miR-299-3p may delay or protect against replicative senescence by improving the metabolic activity of the senesced cells but does not stimulate growth of the remaining cells in senescent cultures. Hence, these findings provide an early insight into the role of hsa-miR-299-3p in the modulation of replicative senescence in HUVECs.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  16. Devasvaran K, Tan JJ, Ng CT, Fong LY, Yong YK
    Oxid Med Cell Longev, 2019;2019:1202676.
    PMID: 31531177 DOI: 10.1155/2019/1202676
    Malaysian Tualang honey (TH) is a known therapeutic honey extracted from the honeycombs of the Tualang tree (Koompassia excelsa) and has been reported for its antioxidant, anti-inflammatory, antiproliferative, and wound healing properties. However, the possible vascular protective effect of TH against oxidative stress remains unclear. In this study, the effects of TH on hydrogen peroxide- (H2O2-) elicited vascular hyperpermeability in human umbilical vein endothelial cells (HUVECs) and Balb/c mice were evaluated. Our data showed that TH concentrations ranging from 0.01% to 1.00% showed no cytotoxic effect to HUVECs. Induction with 0.5 mM H2O2 was found to increase HUVEC permeability, but the effect was significantly reversed attenuated by TH (p < 0.05), of which the permeability with the highest inhibition peaked at 0.1%. In Balb/c mice, TH (0.5 g/kg-1.5 g/kg) significantly (p < 0.05) reduced H2O2 (0.3%)-induced albumin-bound Evans blue leak, in a dose-dependent manner. Immunofluorescence staining confirmed that TH reduced actin stress fiber formation while increasing cortical actin formation and colocalization of caveolin-1 and β-catenin in HUVECs. Signaling studies showed that HUVECs pretreated with TH significantly (p < 0.05) decreased intracellular calcium release, while sustaining the level of cAMP when challenged with H2O2. These results suggested that TH could inhibit H2O2-induced vascular hyperpermeability in vitro and in vivo by suppression of adherence junction protein redistribution via calcium and cAMP, which could have a therapeutic potential for diseases related to the increase of both oxidant and vascular permeability.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism*
  17. Khoo HE, Azlan A, Ismail A, Abas F, Hamid M
    PLoS One, 2014;9(1):e81447.
    PMID: 24416130 DOI: 10.1371/journal.pone.0081447
    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+) and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  18. Kimura TE, Duggirala A, Hindmarch CC, Hewer RC, Cui MZ, Newby AC, et al.
    J Mol Cell Cardiol, 2014 Jul;72(100):9-19.
    PMID: 24534707 DOI: 10.1016/j.yjmcc.2014.02.001
    AIMS: Cyclic AMP inhibits vascular smooth muscle cell (VSMC) proliferation which is important in the aetiology of numerous vascular diseases. The anti-mitogenic properties of cAMP in VSMC are dependent on activation of protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), but the mechanisms are unclear.

    METHODS AND RESULTS: Selective agonists of PKA and EPAC synergistically inhibited Egr1 expression, which was essential for VSMC proliferation. Forskolin, adenosine, A2B receptor agonist BAY60-6583 and Cicaprost also inhibited Egr1 expression in VSMC but not in endothelial cells. Inhibition of Egr1 by cAMP was independent of cAMP response element binding protein (CREB) activity but dependent on inhibition of serum response element (SRE) activity. SRF binding to the Egr1 promoter was not modulated by cAMP stimulation. However, Egr1 expression was dependent on the SRF co-factors Elk1 and 4 but independent of MAL. Inhibition of SRE-dependent Egr1 expression was due to synergistic inhibition of Rac1 activity by PKA and EPAC, resulting in rapid cytoskeleton remodelling and nuclear export of ERK1/2. This was associated with de-phosphorylation of the SRF co-factor Elk1.

    CONCLUSION: cAMP inhibits VSMC proliferation by rapidly inhibiting Egr1 expression. This occurs, at least in part, via inhibition of Rac1 activity leading to rapid actin-cytoskeleton remodelling, nuclear export of ERK1/2, impaired Elk1-phosphorylation and inhibition of SRE activity. This identifies one of the earliest mechanisms underlying the anti-mitogenic effects of cAMP in VSMC but not in endothelial cells, making it an attractive target for selective inhibition of VSMC proliferation.

    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism*
  19. Lai SL, Cheah SC, Wong PF, Noor SM, Mustafa MR
    PLoS One, 2012;7(5):e38103.
    PMID: 22666456 DOI: 10.1371/journal.pone.0038103
    BACKGROUND: Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA), a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.

    METHODOLOGY/PRINCIPAL FINDINGS: PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs) with IC(50) value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2) secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.

    CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy.

    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
  20. Achoui M, Heyninck K, Looi CY, Mustafa AM, Haegeman G, Mustafa MR
    Drug Des Devel Ther, 2014;8:1993-2007.
    PMID: 25349474 DOI: 10.2147/DDDT.S68659
    The terpenoid 17-O-acetylacuminolide (AA) was shown to inhibit the production of several inflammatory mediators. However, the mechanisms by which this compound elicited its anti-inflammatory activity remain to be elucidated. In this study, we analyzed the effects of AA on inflammatory gene expression in two different cell types with primordial importance in the inflammatory processes - endothelial cells and macrophages. In human umbilical vein endothelial cells, AA inhibited the expression of inflammatory proteins including the adhesion molecules intercellular adhesion molecule 1; vascular cell adhesion molecule 1; and E-selectin, as well as the release of the chemokine interleukin-8. Additionally, AA hindered the formation of capillary-like tubes in an in vitro model of angiogenesis. AA's effects in endothelial cells can be attributed at least in part to AA's inhibition of tumor necrosis factor alpha-induced nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB)'s translocation. Also, in lipopolysaccharide-stimulated macrophage-like RAW264.7 cells, AA was able to downregulate the expression of the genes cyclooxygenase 2, inducible nitric oxide synthase, interleukin-6, and chemokine (C-C motif) ligand 2. Moreover, AA inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκBα), IκB kinase (IKK), and the mitogen-activated protein kinases JNK, ERK, and p38. In conclusion, the present results further support the anti-inflammatory potential of AA in different models of inflammation.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links