Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Zreaqat M, Hassan R, Halim AS
    Int J Oral Maxillofac Surg, 2012 Jun;41(6):783-8.
    PMID: 22424709 DOI: 10.1016/j.ijom.2012.02.003
    This comparative cross-sectional study assessed the facial surface dimensions of a group of Malay children with unilateral cleft lip and palate (UCLP) and compared them with a control group. 30 Malay children with UCLP aged 8-10 years and 30 unaffected age-matched children were voluntarily recruited from the Orthodontic Specialist Clinic in Hospital Universiti Sains Malaysia (HUSM). For the cleft group, lip and palate were repaired and assessment was performed prior to alveolar bone grafting and orthodontic treatment. The investigation was carried out using 3D digital stereophotogrammetry. 23 variables and two ratios were compared three-dimensionally between both groups. Statistically significant dimensional differences (P<0.05) were found between the UCLP Malay group and the control group mainly in the nasolabial region. These include increased alar base and alar base root width, shorter upper lip length, and increased nose base/mouth width ratio in the UCLP group. There were significant differences between the facial surface morphology of UCLP Malay children and control subjects. Particular surgical procedures performed during primary surgeries may contribute to these differences and negatively affect the surgical outcome.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  2. Yap PT, Paramesran R
    IEEE Trans Pattern Anal Mach Intell, 2005 Dec;27(12):1996-2002.
    PMID: 16355666
    Legendre moments are continuous moments, hence, when applied to discrete-space images, numerical approximation is involved and error occurs. This paper proposes a method to compute the exact values of the moments by mathematically integrating the Legendre polynomials over the corresponding intervals of the image pixels. Experimental results show that the values obtained match those calculated theoretically, and the image reconstructed from these moments have lower error than that of the conventional methods for the same order. Although the same set of exact Legendre moments can be obtained indirectly from the set of geometric moments, the computation time taken is much longer than the proposed method.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  3. Wong SC, Nawawi O, Ramli N, Abd Kadir KA
    Acad Radiol, 2012 Jun;19(6):701-7.
    PMID: 22578227 DOI: 10.1016/j.acra.2012.02.012
    The aim of this study was to compare conventional two-dimensional (2D) digital subtraction angiography (DSA) with three-dimensional (3D) rotational DSA in the investigation of intracranial aneurysm in terms of detection, size measurement, neck diameter, neck delineation, and relationship with surrounding vessels. A further aim was to compare radiation dose, contrast volume, and procedural time between the two protocols.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  4. Teo BG, Dhillon SK, Lim LH
    PLoS One, 2013;8(10):e77650.
    PMID: 24204903 DOI: 10.1371/journal.pone.0077650
    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  5. Siotia J, Gupta SK, Acharya SR, Saraswathi V
    Int J Comput Dent, 2011;14(4):321-34.
    PMID: 22324223
    Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  6. Sim KS, Chia FK, Nia ME, Tso CP, Chong AK, Abbas SF, et al.
    Comput Biol Med, 2014 Jun;49:46-59.
    PMID: 24736203 DOI: 10.1016/j.compbiomed.2014.03.003
    A computer-aided detection auto-probing (CADAP) system is presented for detecting breast lesions using dynamic contrast enhanced magnetic resonance imaging, through a spatial-based discrete Fourier transform. The stand-alone CADAP system reduces noise, refines region of interest (ROI) automatically, and detects the breast lesion with minimal false positive detection. The lesions are then classified and colourised according to their characteristics, whether benign, suspicious or malignant. To enhance the visualisation, the entire analysed ROI is constructed into a 3-D image, so that the user can diagnose based on multiple views on the ROI. The proposed method has been applied to 101 sets of digital images, and the results compared with the biopsy results done by radiologists. The proposed scheme is able to identify breast cancer regions accurately and efficiently.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  7. Salih QA, Ramli AR, Mahmud R, Wirza R
    MedGenMed, 2005;7(2):1.
    PMID: 16369380
    Different approaches to gray and white matter measurements in magnetic resonance imaging (MRI) have been studied. For clinical use, the estimated values must be reliable and accurate when, unfortunately, many techniques fail on these criteria in an unrestricted clinical environment. A recent method for tissue clusterization in MRI analysis has the advantage of great simplicity, and it takes the account of partial volume effects. In this study, we will evaluate the intensity of MR sequences known as T1-weighted images in an axial sliced section. Intensity group clustering algorithms are proposed to achieve further diagnosis for brain MRI, which has been hardly studied. Subjective study has been suggested to evaluate the clustering group intensity in order to obtain the best diagnosis as well as better detection for the suspected cases. This technique makes use of image tissue biases of intensity value pixels to provide 2 regions of interest as techniques. Moreover, the original mathematic solution could still be used with a specific set of modern sequences. There are many advantages to generalize the solution, which give far more scope for application and greater accuracy.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  8. Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    J Dent, 2012 Jun;40(6):467-74.
    PMID: 22366313 DOI: 10.1016/j.jdent.2012.02.009
    The aim of this study was to analyse micromotion and stress distribution at the connections of implants and four types of abutments: internal hexagonal, internal octagonal, internal conical and trilobe.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  9. Rijal OM, Abdullah NA, Isa ZM, Davaei FA, Noor NM, Tawfiq OF
    PMID: 22255484 DOI: 10.1109/IEMBS.2011.6091261
    Standardized digital images of maxillary dental casts of 47 subjects were analyzed using MATLAB software whereby the two hamular notches and the incisive papilla defines the Cartesian vertical and horizontal axes, as well as the origin. The angle and length of the midpoints of the anterior teeth, mesiobuccal and distobuccal cusp of the posterior teeth were measured from the origin and denoted as θ(1), …, θ(18) and l(1), …, l(18) respectively. These values were collectively used to represent the shape of each dental cast. Clustering and principal component analyses were employed to find possible groups of dental arches using the above measure of shape. The main result of this study is that the 3 groups of dental arch shape may be represented by the novel feature vector v(k) = (θ(k)(1), l(k)(1), θ(k)(3), l(k)(3), θ(k)(5), l(k)(5), θ(k)(13), l(k)(13)), k = 1, 2, 3. Knowledge of v(k) implies three impression trays should be sufficient in a particular prosthetic dentistry application for Malaysian patients. Further, given that v(k) are accurately measured they may be potential candidates as evidence in specific application of forensic dentistry.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  10. Rassem TH, Khoo BE
    ScientificWorldJournal, 2014;2014:373254.
    PMID: 24977193 DOI: 10.1155/2014/373254
    Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  11. Othman SA, Ahmad R, Asi SM, Ismail NH, Rahman ZA
    Br J Oral Maxillofac Surg, 2014 Mar;52(3):208-13.
    PMID: 24342372 DOI: 10.1016/j.bjoms.2013.11.008
    The aims of this study were to assess the quantitative values of measurements using proportion indices in the craniofacial region in patients with repaired, non-syndromic, complete unilateral cleft lip and palate (UCLP), and compare them with a control group who did not have clefts using the non-invasive systems of 3-dimensional technology. Three-dimensional measurements of the facial surfaces of 15 Malay patients who had UCLP repaired and 100 Malay control patients aged 18-25 years were analysed. The 3-dimensional images of the respondents' faces were captured using the VECTRA-3D Stereophotogrammetry System. Eleven craniofacial proportions were assessed using a combination of 18 linear measurements obtained from 21 anthropometric soft tissue landmarks. These measurements were used to produce proportion indices to find the differences in the morphological features between the groups, and assessed using the independent sample t test and z scores. There were significant differences between the groups in 7 out of 11 craniofacial proportion indices (p=0.001-0.044). Z scores of 2 indices were disproportionate. They were nasal index (which was severely supernormal) and upper lip index (which was moderately supernormal). Patients with UCLP had higher mean z scores, indicating that patients with UCLP tended to have larger faces than the control group. There were clinically important differences mainly in the nasolabial area, where the nose and the upper lip were wider, larger, or flatter in patients with UCLP.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  12. Nusee Z, Ibrahim N, Rus RM, Ismail H
    Taiwan J Obstet Gynecol, 2014 Mar;53(1):12-6.
    PMID: 24767639 DOI: 10.1016/j.tjog.2013.01.028
    To determine the accuracy of bladder volume (BV) measurement and to identify factors that influenced the ultrasound bladder scanner (UBS) measurement of BV in postpartum women compared with transurethral catheterization.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  13. Mousa MA, Abdullah JY, Jamayet NB, Alam MK, Husein A
    Biomed Res Int, 2021;2021:6419774.
    PMID: 34447852 DOI: 10.1155/2021/6419774
    Aim: This systematic review is aimed at investigating the biomechanical stress that develops in the maxillofacial prostheses (MFP) and supporting structures and methods to optimize it. Design and Methods. A literature survey was conducted for full-text English articles which used FEA to examine the stress developed in conventional and implant-assisted MFPs from January 2010 to December 2020.

    Results: 87 articles were screened to get an update on the desired information. 74 were excluded based on a complete screening, and finally, 13 articles were recruited for complete reviewing. Discussion. The MFP is subjected to stress, which is reflected in the form of compressive and tensile strengths. The stress is mainly concentrated the resection line and around the apices of roots of teeth next to the defect. Diversity of designs and techniques were introduced to optimize the stress distribution, such as modification of the clasp design, using materials with different mechanical properties for dentures base and retainer, use of dental (DI) and/or zygomatic implants (ZI), and free flap reconstruction before prosthetic rehabilitation.

    Conclusion: Using ZI in the defective side of the dentulous maxillary defect and defective and nondefective side of the edentulous maxillary defect was found more advantageous, in terms of compression and tensile stress and retention, when compared with DI and free flap reconstruction.

    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  14. Moosavi Tayebi R, Wirza R, Sulaiman PS, Dimon MZ, Khalid F, Al-Surmi A, et al.
    J Cardiothorac Surg, 2015;10:58.
    PMID: 25896185 DOI: 10.1186/s13019-015-0249-2
    Computerized tomographic angiography (3D data representing the coronary arteries) and X-ray angiography (2D X-ray image sequences providing information about coronary arteries and their stenosis) are standard and popular assessment tools utilized for medical diagnosis of coronary artery diseases. At present, the results of both modalities are individually analyzed by specialists and it is difficult for them to mentally connect the details of these two techniques. The aim of this work is to assist medical diagnosis by providing specialists with the relationship between computerized tomographic angiography and X-ray angiography.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  15. Majeed A, Mt Piah AR, Ridzuan Yahya Z
    PLoS One, 2016;11(3):e0149921.
    PMID: 26967643 DOI: 10.1371/journal.pone.0149921
    Maxillofacial trauma are common, secondary to road traffic accident, sports injury, falls and require sophisticated radiological imaging to precisely diagnose. A direct surgical reconstruction is complex and require clinical expertise. Bio-modelling helps in reconstructing surface model from 2D contours. In this manuscript we have constructed the 3D surface using 2D Computerized Tomography (CT) scan contours. The fracture part of the cranial vault are reconstructed using GC1 rational cubic Ball curve with three free parameters, later the 2D contours are flipped into 3D with equidistant z component. The constructed surface is represented by contours blending interpolant. At the end of this manuscript a case report of parietal bone fracture is also illustrated by employing this method with a Graphical User Interface (GUI) illustration.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  16. Lu TY, Kadir K, Ngeow WC, Othman SA
    Sci Rep, 2017 11 01;7(1):14819.
    PMID: 29093554 DOI: 10.1038/s41598-017-14829-4
    This study aimed to determine the prevalence of double eyelid among two main Mongoloid ethnicities, the Malays and Chinese who reside in Malaysia. We also measured their periorbital tissue parameters for application in anthropology, optometry, ophthalmology, oculoplastic surgery and maxillofacial trauma surgery. The images of the 103 Malay and 97 Chinese volunteers were captured using indirect 3D photogrammetry, and quantitative measurement was obtained using the software provided by the manufacturer. All Malays and 70.1% of Chinese in this cross section population had double eyelid on both eyes. The mean pretarsal skin height was 3.99 mm for the Malays and 2.29 mm for the Chinese. The Malays appeared to have shorter eyebrow height (11.10 mm) compared to the Chinese (11.79 mm). An opposite pattern could be seen in the measurement of upper eyelid crease height between the Malays (8.33 mm) and the Chinese (4.91 mm). Of note, the intercanthal distance of the Chinese (IDC = 35.85 mm) was wider and their interpupillary distance was narrower (IPD = 62.85 mm) compared to the Malays' (ICD = 34.21 mm; IPD = 64.04 mm). In conclusion, there were significant differences in the prevalence of double eyelid and periorbital tissue measurements between the Malays and Chinese.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  17. Liew YM, McLaughlin RA, Chan BT, Abdul Aziz YF, Chee KH, Ung NM, et al.
    Phys Med Biol, 2015 Apr 7;60(7):2715-33.
    PMID: 25768708 DOI: 10.1088/0031-9155/60/7/2715
    Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  18. Liew TS, Schilthuizen M
    PLoS One, 2016;11(6):e0157069.
    PMID: 27280463 DOI: 10.1371/journal.pone.0157069
    Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
  19. Leong SS, Vijayananthan A, Yaakup NA, Shah N, Ng KH, Acharya UR, et al.
    Comput Biol Med, 2016 11 01;78:58-64.
    PMID: 27658262 DOI: 10.1016/j.compbiomed.2016.09.006
    OBJECTIVE: To determine the reproducibility of three-dimensional (3D) ultrasound (US) over two-dimensional (2D) US in characterizing atherosclerotic carotid plaques using inter- and intra-observer agreement metrics.

    METHODS: A Total of 51 patients with 105 carotid artery plaques were screened using 3D and 2D US probes attached to the same US scanner. Two independent observers characterized the plaques based on the morphological features namely echotexture, echogenicity and surface characteristics. The scores assigned to each morphological feature were used to determine intra- and inter-observer performance. The level of agreement was measured using Kappa coefficient.

    RESULTS: The first observer with 2D US showed fair (k=0.4-0.59) and very strong (k>0.8) with 3D US intra-observer agreements using three morphological features. The second observer indicated moderate strong (k=0.6-0.79) with 2D US and very strong with 3D US (k>0.8) intra-observer performances. Moderate strong (k=0.6-0.79) and very strong (k>0.8) inter-observer agreements were reported with 2D US and 3D US respectively. The results with 2D and 3D US were correlated 62% using only echotexture and 56% using surface morphology coupled with echogenicity. 3D US gave a lower score than 2D 71% of the time (p=0.005) in disagreement cases.

    CONCLUSION: High reproducibility in carotid plaque characterization was obtained using 3D US rather than 2D US. Hence, it can be a preferred imaging modality in routine or follow up plaque screening of patients with carotid artery disease.

    Matched MeSH terms: Imaging, Three-Dimensional/methods
  20. Kolivand H, Sunar MS
    PLoS One, 2014;9(9):e108334.
    PMID: 25268480 DOI: 10.1371/journal.pone.0108334
    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.
    Matched MeSH terms: Imaging, Three-Dimensional/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links