Affiliations 

  • 1 Department of Biomedical Imaging, University Malaya Medical Centre Kuala Lumpur, Malaysia. Electronic address: ssleong@ummc.edu.my
  • 2 Department of Biomedical Imaging, University Malaya Medical Centre Kuala Lumpur, Malaysia
  • 3 Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, SIM University, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia
  • 4 Department of Biophysics, University of Adnan Menderes, Aydin, Turkey
Comput Biol Med, 2016 11 01;78:58-64.
PMID: 27658262 DOI: 10.1016/j.compbiomed.2016.09.006

Abstract

OBJECTIVE: To determine the reproducibility of three-dimensional (3D) ultrasound (US) over two-dimensional (2D) US in characterizing atherosclerotic carotid plaques using inter- and intra-observer agreement metrics.

METHODS: A Total of 51 patients with 105 carotid artery plaques were screened using 3D and 2D US probes attached to the same US scanner. Two independent observers characterized the plaques based on the morphological features namely echotexture, echogenicity and surface characteristics. The scores assigned to each morphological feature were used to determine intra- and inter-observer performance. The level of agreement was measured using Kappa coefficient.

RESULTS: The first observer with 2D US showed fair (k=0.4-0.59) and very strong (k>0.8) with 3D US intra-observer agreements using three morphological features. The second observer indicated moderate strong (k=0.6-0.79) with 2D US and very strong with 3D US (k>0.8) intra-observer performances. Moderate strong (k=0.6-0.79) and very strong (k>0.8) inter-observer agreements were reported with 2D US and 3D US respectively. The results with 2D and 3D US were correlated 62% using only echotexture and 56% using surface morphology coupled with echogenicity. 3D US gave a lower score than 2D 71% of the time (p=0.005) in disagreement cases.

CONCLUSION: High reproducibility in carotid plaque characterization was obtained using 3D US rather than 2D US. Hence, it can be a preferred imaging modality in routine or follow up plaque screening of patients with carotid artery disease.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.