Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Rafiqul ISM, Mimi Sakinah AM, Zularisam AW
    Prep Biochem Biotechnol, 2021;51(10):1060-1070.
    PMID: 33724897 DOI: 10.1080/10826068.2021.1897840
    Enzymatic production of bioxylitol from lignocellulosic biomass (LCB) provides a promising alternative to both chemical and fermentative routes. This study aimed to assess the impacts of catalytic variables on bioxylitol production from wood sawdust using xylose reductase (XR) enzyme and to optimize the bioprocess. Enzyme-based xylitol production was carried out in batch cultivation under various experimental conditions to obtain maximum xylitol yield and productivity. The response surface methodology (RSM) was followed to fine-tune the most significant variables such as reaction time, temperature, and pH, which influence the synthesis of bioxylitol from sawdust hydrolysate and to optimize them. The optimum time, temperature, and pH became were 12.25 h, 35 °C, and 6.5, respectively, with initial xylose 18.8 g/L, NADPH 2.83 g/L, XR 0.027 U/mg, and agitation 100 rpm. The maximum xylitol production was attained at 16.28 g/L with a yield and productivity of 86.6% (w/w) and 1.33 g/L·h, respectively. Optimization of catalytic parameters using sequential strategies resulted in 1.55-fold improvement in overall xylitol production. This study explores a novel strategy for using sawdust hemicellulose in bioxylitol production by enzyme technology.
    Matched MeSH terms: Industrial Microbiology/methods
  2. Rashid JI, Samat N, Mohtar W, Yusoff W
    Pak J Biol Sci, 2011 May 01;14(9):533-9.
    PMID: 22032082
    Optimization of three parameters, temperature (25-35 degrees C), moisture content (40% (w/v)-60% (w/v) and inoculum sizes (5% (w/v)-15% (w/v) were investigated and optimized by Response Surface Methodology (RSM) for optimal mannanase production by Aspergillus terreus SUK-1. A second order polynomial equation was fitted and the optimum condition was established. The result showed that the moisture content was a critical factor in terms of its effect on mannanase. The optimum condition for mannanase production was predicted at 42.86% (w/v) initial moisture (31 C) temperature and 5.5% (w/v) inoculum size. The predicted optimal parameter were tested in the laboratory and the mannanase activity 45.12 IU mL-1 were recorded to be closed to the predicted value (44.80 IU mL-1). Under the optimized SSF condition (31 degrees C, 42.86% moisture content (w/v) and 5.5% inoculum size (w/v)), the maximum mannanase production was to prevail about 45.12 IU mL-1 compare to before optimized (30 degrees C, 50% moisture content (w/v) and 10% inoculum size (w/v)) was only 34.42 IU mL-1.
    Matched MeSH terms: Industrial Microbiology/methods*
  3. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
    Matched MeSH terms: Industrial Microbiology/methods*
  4. Gunny AA, Arbain D, Sithamparam L
    Pak J Biol Sci, 2013 Sep 15;16(18):960-4.
    PMID: 24502155
    Production cost of enzyme is largely determined by the type of the strain and raw material used to propagate the strain. Hence, selection of the strain and raw materials is crucial in enzyme production. For Glucose oxidase (GOx), previous studies showed Aspergillus terreus UniMAP AA-1 offers a better alternative to the existing sources. Thus, a lower production cost could be logically anticipated by growing the strain in a cheaper complex media such as molasses. In this work, sugar cane molasses, supplemented with urea and carbonate salt and a locally isolated strain Aspergillus terreus UniMAP AA-1 were used to produce a crude GOx enzyme in a small scale. A statistical optimization approach namely Response Surface Methodology (RSM) was used to optimize the media components for highest GOx activity. It was found that the highest GOx activity was achieved using a combination of molasses, carbonate salt and urea at concentration 32.51, 4.58 and 0.93% (w/v), respectively. This study provides an alternative optimized media conditions for GOx production using locally available raw materials.
    Matched MeSH terms: Industrial Microbiology/methods*
  5. Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, et al.
    J Environ Manage, 2016 Dec 01;183:182-95.
    PMID: 27591845 DOI: 10.1016/j.jenvman.2016.08.059
    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.
    Matched MeSH terms: Industrial Microbiology/methods*
  6. Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Kim CH, et al.
    Appl Biochem Biotechnol, 2011 Aug;164(8):1468-80.
    PMID: 21424706 DOI: 10.1007/s12010-011-9227-x
    In the present study, a novel oleaginous Thraustochytrid containing a high content of docosahexaenoic acid (DHA) was isolated from a mangrove ecosystem in Malaysia. The strain identified as an Aurantiochytrium sp. by 18S rRNA sequencing and named KRS101 used various carbon and nitrogen sources, indicating metabolic versatility. Optimal culture conditions, thus maximizing cell growth, and high levels of lipid and DHA production, were attained using glucose (60 g l⁻¹) as carbon source, corn steep solid (10 g l⁻¹) as nitrogen source, and sea salt (15 g l⁻¹). The highest biomass, lipid, and DHA production of KRS101 upon fed-batch fermentation were 50.2 g l⁻¹ (16.7 g l⁻¹ day⁻¹), 21.8 g l⁻¹ (44% DCW), and 8.8 g l⁻¹ (40% TFA), respectively. Similar values were obtained when a cheap substrate like molasses, rather than glucose, was used as the carbon source (DCW of 52.44 g l⁻¹, lipid and DHA levels of 20.2 and 8.83 g l⁻¹, respectively), indicating that production of microbial oils containing high levels of DHA can be produced economically when the novel strain is used.
    Matched MeSH terms: Industrial Microbiology/methods
  7. Bahrin EK, Ibrahim MF, Abd Razak MN, Abd-Aziz S, Shah UK, Alitheen N, et al.
    Prep Biochem Biotechnol, 2012;42(2):155-70.
    PMID: 22394064 DOI: 10.1080/10826068.2011.585413
    The response surface method was applied in this study to improve cellulase production from oil palm empty fruit bunch (OPEFB) by Botryosphaeria rhodina. An experimental design based on a two-level factorial was employed to screen the significant environmental factors for cellulase production. The locally isolated fungus Botryosphaeria rhodina was cultivated on OPEFB under solid-state fermentation (SSF). From the analysis of variance (ANOVA), the initial moisture content, amount of substrate, and initial pH of nutrient supplied in the SSF system significantly influenced cellulase production. Then the optimization of the variables was done using the response surface method according to central composite design (CCD). Botryosphaeria rhodina exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was at 24.32%, initial pH of nutrient was 5.96, and 3.98 g of substrate was present. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 17.91 U/g (5.49-fold). High cellulase production at low moisture content is a very rare condition for fungi cultured in solid-state fermentation.
    Matched MeSH terms: Industrial Microbiology/methods*
  8. Mahazar NH, Zakuan Z, Norhayati H, MeorHussin AS, Rukayadi Y
    Pak J Biol Sci, 2017;20(3):154-159.
    PMID: 29023007 DOI: 10.3923/pjbs.2017.154.159
    BACKGROUND AND OBJECTIVE: Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp.

    MATERIALS AND METHODS: Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract.

    RESULTS: Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract.

    CONCLUSION: This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

    Matched MeSH terms: Industrial Microbiology/methods*
  9. Tam YJ, Allaudin ZN, Lila MA, Bahaman AR, Tan JS, Rezaei MA
    BMC Biotechnol, 2012;12:70.
    PMID: 23039947 DOI: 10.1186/1472-6750-12-70
    Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells.
    Matched MeSH terms: Industrial Microbiology/methods*
  10. Yip CH, Yarkoni O, Ajioka J, Wan KL, Nathan S
    Appl Microbiol Biotechnol, 2019 Feb;103(4):1667-1680.
    PMID: 30637495 DOI: 10.1007/s00253-018-09611-z
    Prodigiosin, a red linear tripyrrole pigment and a member of the prodiginine family, is normally secreted by the human pathogen Serratia marcescens as a secondary metabolite. Studies on prodigiosin have received renewed attention as a result of reported immunosuppressive, antimicrobial and anticancer properties. High-level synthesis of prodigiosin and the bioengineering of strains to synthesise useful prodiginine derivatives have also been a subject of investigation. To exploit the potential use of prodigiosin as a clinical drug targeting bacteria or as a dye for textiles, high-level synthesis of prodigiosin is a prerequisite. This review presents an overview on the biosynthesis of prodigiosin from its natural host Serratia marcescens and through recombinant approaches as well as highlighting the beneficial properties of prodigiosin. We also discuss the prospect of adopting a synthetic biology approach for safe and cost-effective production of prodigiosin in a more industrially compliant surrogate host.
    Matched MeSH terms: Industrial Microbiology/methods
  11. Darah I, Sumathi G, Jain K, Lim SH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1682-90.
    PMID: 21947762 DOI: 10.1007/s12010-011-9387-8
    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
    Matched MeSH terms: Industrial Microbiology/methods*
  12. Maiangwa J, Ali MS, Salleh AB, Rahman RN, Shariff FM, Leow TC
    Extremophiles, 2015 Mar;19(2):235-47.
    PMID: 25472009 DOI: 10.1007/s00792-014-0710-5
    Psychrophilic microorganisms are cold-adapted with distinct properties from other thermal classes thriving in cold conditions in large areas of the earth's cold environment. Maintenance of functional membranes, evolving cold-adapted enzymes and synthesizing a range of structural features are basic adaptive strategies of psychrophiles. Among the cold-evolved enzymes are the cold-active lipases, a group of microbial lipases with inherent stability-activity-flexibility property that have engaged the interest of researchers over the years. Current knowledge regarding these cold-evolved enzymes in psychrophilic bacteria proves a display of high catalytic efficiency with low thermal stability, which is a differentiating feature with that of their mesophilic and thermophilic counterparts. Improvement strategies of their adaptive structural features have significantly benefited the enzyme industry. Based on their homogeneity and purity, molecular characterizations of these enzymes have been successful and their properties make them unique biocatalysts for various industrial and biotechnological applications. Although, strong association of lipopolysaccharides from Antarctic microorganisms with lipid hydrolases pose a challenge in their purification, heterologous expression of the cold-adapted lipases with affinity tags simplifies purification with higher yield. The review discusses these cold-evolved lipases from bacteria and their peculiar properties, in addition to their potential biotechnological and industrial applications.
    Matched MeSH terms: Industrial Microbiology/methods
  13. Ng HS, Wan PK, Ng TC, Lan JC
    J Biosci Bioeng, 2020 Aug;130(2):200-204.
    PMID: 32389469 DOI: 10.1016/j.jbiosc.2020.04.003
    Ectoine is a zwitterionic amino acid derivative that can be naturally sourced from halophilic microorganisms. The increasing demands of ectoine in various industries have urged the researches on the cost-effective approaches on production of ectoine. Ionic liquids-based aqueous biphasic system (ILABS) was applied to recover Halomonas salina ectoine from cells hydrolysate. The 1-butyl-3-methylimidazolium tetrafluoroborate (Bmim)BF4 was used in the ILABS and the recovery efficiency of ILABS to recover ectoine from H. salina cells lysate was evaluated by determining the effects of phase composition; pHs; crude loading and additional neutral salt (NaCl). The hydrophilic ectoine was targeted to partition to the hydrophilic salt-rich phase. A total yield (YB) of 96.32% ± 1.08 of ectoine was obtained with ILABS of phase composition of 20% (w/w) (Bmim)BF4 and 30% (w/w) sulfate salts; system pH of 5.5 when the 20% (w/w) of crude feedstock was applied to the ILABS. There was no significant enhancement on the ectoine recovery efficiency using the ILABS when NaCl was added, therefore the ILABS composition without the additional neutral salt was recommended for the primary purification of ectoine. Partition coefficient (KE) of 30.80 ± 0.42, purity (PE) of 95.82% and enrichment factor (Ef) of 1.92 were recorded with the optimum (Bmim)BF4/sulfate ILABS. These findings have provided an insight on the feasibility of recovery of intracellular biomolecules using the green solvent-based aqueous system in one single-step operation.
    Matched MeSH terms: Industrial Microbiology/methods*
  14. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM
    J Biomed Biotechnol, 2011;2011:702179.
    PMID: 21960739 DOI: 10.1155/2011/702179
    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.
    Matched MeSH terms: Industrial Microbiology/methods*
  15. Ismail KS, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A
    Biotechnol J, 2014 Dec;9(12):1519-25.
    PMID: 24924214 DOI: 10.1002/biot.201300553
    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.
    Matched MeSH terms: Industrial Microbiology/methods*
  16. Chan GF, Rashid NA, Chua LS, Ab llah N, Nasiri R, Ikubar MR
    Bioresour Technol, 2012 Feb;105:48-59.
    PMID: 22182471 DOI: 10.1016/j.biortech.2011.11.094
    A novel bacterial consortium, NAR-2 which consists of Citrobacter freundii A1, Enterococcus casseliflavus C1 and Enterobacter cloacae L17 was investigated for biodegradation of Amaranth azo dye under sequential microaerophilic-aerobic condition. The NAR-2 bacterial consortium with E. casseliflavus C1 as the dominant strain enhanced the decolorization process resulting in reduction of Amaranth in 30 min. Further aerobic biodegradation, which was dominated by C. freundii A1 and E. cloacae L17, allowed biotransformation of azo reduction intermediates and mineralization via metabolic pathways including benzoyl-CoA, protocatechuate, salicylate, gentisate, catechol and cinnamic acid. The presence of autoxidation products which could be metabolized to 2-oxopentenoate was elucidated. The biodegradation mechanism of Amaranth by NAR-2 bacterial consortium was predicted to follow the steps of azo reduction, deamination, desulfonation and aromatic ring cleavage. This is for the first time the comprehensive microaerophilic-aerobic biotransformation pathways of Amaranth dye intermediates by bacterial consortium are being proposed.
    Matched MeSH terms: Industrial Microbiology/methods
  17. Tan IK, Ho CC
    Appl Microbiol Biotechnol, 1991 Nov;36(2):163-6.
    PMID: 1368105
    The utilisation of palm oil and its fractions by Penicillium chrysogenum for growth and penicillin production is strain-dependent. Strain H1107 could utilise crude palm oil, its liquid (palm olein) and solid (palm stearin) fractions and its component fatty acids (oleic, palmitic, stearic and myristic) as the main carbon source; strain M223 could not. Cell-bound lipase activity was higher in H1107 than in M223.
    Matched MeSH terms: Industrial Microbiology/methods*
  18. Dinarvand M, Rezaee M, Foroughi M
    Braz J Microbiol, 2017 Jul-Sep;48(3):427-441.
    PMID: 28359854 DOI: 10.1016/j.bjm.2016.10.026
    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R2) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications.
    Matched MeSH terms: Industrial Microbiology/methods*
  19. Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE
    FEMS Microbiol Lett, 2018 10 01;365(20).
    PMID: 30169778 DOI: 10.1093/femsle/fny213
    Lactic acid bacteria constitute a diverse group of industrially significant, safe microorganisms that are primarily used as starter cultures and probiotics, and are also being developed as production systems in industrial biotechnology for biocatalysis and transformation of renewable feedstocks to commodity- and high-value chemicals, and health products. Development of strains, which was initially based mainly on natural approaches, is also achieved by metabolic engineering that has been facilitated by the availability of genome sequences and genetic tools for transformation of some of the bacterial strains. The aim of this paper is to provide a brief overview of the potential of lactic acid bacteria as biological catalysts for production of different organic compounds for food and non-food sectors based on their diversity, metabolic- and stress tolerance features, as well as the use of genetic/metabolic engineering tools for enhancing their capabilities.
    Matched MeSH terms: Industrial Microbiology/methods*
  20. Alsaheb RA, Zjeh KZ, Malek RA, Abdullah JK, El Baz A, El Deeb N, et al.
    Recent Pat Food Nutr Agric, 2020;11(3):211-218.
    PMID: 32178622 DOI: 10.2174/2212798411666200316153148
    BACKGROUND: For many years, Ganoderma was highly considered as biofactory for the production of different types of bioactive metabolites. Of these bioactive compounds, polysaccharides gained much attention based on their high biotherapeutic properties. Therefore, special attention has been paid during the last years for the production of mushrooms bioactive compounds in a closed cultivation system to shorten the cultivation time and increase the product yield.

    OBJECTIVES: This work focuses on the development of a simple cultivation strategy for exopolysaccharides (EPS) production using Ganoderma lucidum and submerged cultivation system.

    METHODS: At first, the best medium supporting EPS production was chosen experimentally from the current published data. Second, like many EPS production processes, carbon and nitrogen concentrations were optimized to support the highest production of polysaccharides in the shake flask level. Furthermore, the process was scaled up in 16-L stirred tank bioreactor.

    RESULTS: The results clearly demonstrated that the best cultivation strategy was cultivation under controlled pH conditions (pH 5.5). Under this condition, the maximal volumetric and specific yield of EPS production were, 5.0 g/L and 0.42 g/g, respectively.

    CONCLUSION: The current results clearly demonstrate the high potential use of submerged cultivation system as an alternative to conventional solid-state fermentation for EPS production by G. lucidum. Furthermore, the optimization of both carbon and nitrogen sources concentration and scaling up of the process showed a significant increase in both volumetric and specific EPS production.

    Matched MeSH terms: Industrial Microbiology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links