Displaying all 13 publications

Abstract:
Sort:
  1. Kirimtat A, Krejcar O, Selamat A, Herrera-Viedma E
    BMC Bioinformatics, 2020 Mar 11;21(Suppl 2):88.
    PMID: 32164529 DOI: 10.1186/s12859-020-3355-7
    BACKGROUND: In biomedicine, infrared thermography is the most promising technique among other conventional methods for revealing the differences in skin temperature, resulting from the irregular temperature dispersion, which is the significant signaling of diseases and disorders in human body. Given the process of detecting emitted thermal radiation of human body temperature by infrared imaging, we, in this study, present the current utility of thermal camera models namely FLIR and SEEK in biomedical applications as an extension of our previous article.

    RESULTS: The most significant result is the differences between image qualities of the thermograms captured by thermal camera models. In other words, the image quality of the thermal images in FLIR One is higher than SEEK Compact PRO. However, the thermal images of FLIR One are noisier than SEEK Compact PRO since the thermal resolution of FLIR One is 160 × 120 while it is 320 × 240 in SEEK Compact PRO.

    CONCLUSION: Detecting and revealing the inhomogeneous temperature distribution on the injured toe of the subject, we, in this paper, analyzed the imaging results of two different smartphone-based thermal camera models by making comparison among various thermograms. Utilizing the feasibility of the proposed method for faster and comparative diagnosis in biomedical problems is the main contribution of this study.

    Matched MeSH terms: Infrared Rays*
  2. Gasmelseed A
    Comput Methods Biomech Biomed Engin, 2011 Jul;14(7):665-71.
    PMID: 21480080 DOI: 10.1080/10255842.2011.563738
    In electromagnetic dosimetry, anatomical human models are commonly obtained by segmentation of magnetic resonance imaging or computed tomography scans. In this paper, a human head model extracted from thermal infrared images is examined in terms of its applicability to specific absorption rate (SAR) calculations. Since thermal scans are two-dimensional (2D) representation of surface temperature, this allows researchers to overcome the extensive computational demand associated with 3D simulation. The numerical calculations are performed using the finite-difference time-domain method with mesh sizes of 2 mm at 900 MHz plane wave irradiation. The power density of the incident plane wave is assumed to be 10 W/m(2). Computations were compared with a realistic anatomical head model. The results show that although there were marked differences in the local SAR distribution in the various tissues in the two models, the 1 g peak SAR values are approximately similar in the two models.
    Matched MeSH terms: Infrared Rays*
  3. Mambou SJ, Maresova P, Krejcar O, Selamat A, Kuca K
    Sensors (Basel), 2018 Aug 25;18(9).
    PMID: 30149621 DOI: 10.3390/s18092799
    Women's breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models.
    Matched MeSH terms: Infrared Rays*
  4. Abdul Rahim R, Pang JF, Chan KS, Leong LC, Sulaiman S, Abdul Manaf MS
    ISA Trans, 2007 Apr;46(2):131-45.
    PMID: 17367791
    The data distribution system of this project is divided into two types, which are a Two-PC Image Reconstruction System and a Two-PC Velocity Measurement System. Each data distribution system is investigated to see whether the results' refreshing rate of the corresponding measurement can be greater than the rate obtained by using a single computer in the same measurement system for each application. Each system has its own flow control protocol for controlling how data is distributed within the system in order to speed up the data processing time. This can be done if two PCs work in parallel. The challenge of this project is to define the data flow process and critical timing during data packaging, transferring and extracting in between PCs. If a single computer is used as a data processing unit, a longer time is needed to produce a measurement result. This insufficient real-time result will cause problems in a feedback control process when applying the system in industrial plants. To increase the refreshing rate of the measurement result, an investigation on a data distribution system is performed to replace the existing data processing unit.
    Matched MeSH terms: Infrared Rays*
  5. Jumail A, Liew TS, Salgado-Lynn M, Fornace KM, Stark DJ
    Primates, 2021 Jan;62(1):143-151.
    PMID: 32572697 DOI: 10.1007/s10329-020-00837-y
    A number of primate census techniques have been developed over the past half-century, each of which have advantages and disadvantages in terms of resources required by researchers (e.g., time and costs), availability of technologies, and effectiveness in different habitat types. This study aims to explore the effectiveness of a thermal imaging technique to estimate the group size of different primate species populations in a degraded riparian forest in the Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah. We compared this survey technique to the conventional visual counting method along the riverbank. For 38 days, a total of 138 primate groups were observed by thermal camera and visually throughout the study. Optimal conditions for the thermal camera were clear weather, not more than 100 m distance from the observer to the targeted area, boat speed ranging between 5 and 12 km/h, and early morning between 04:30 and 05:30 am. The limitations of the thermal cameras include the inability to identify individual species, sexes, age classes, and also to discern between animals closely aggregated (i.e., mothers with attached infants). Despite these limitations with the thermal camera technique, 1.78 times more primates were detected than counting by eye (p 
    Matched MeSH terms: Infrared Rays
  6. Rohaizar MH, Sepeai S, Surhada N, Ludin NA, Ibrahim MA, Sopian K, et al.
    Heliyon, 2019 Nov;5(11):e02790.
    PMID: 31768436 DOI: 10.1016/j.heliyon.2019.e02790
    Continuing trend in silicon wafer thickness directed at cost reduction approaches basic boundaries created by: (a) mismatch between Al paste and Si wafer thermal expansion and (b) incomplete optical absorption. With its symmetrical front and back electrical contacts, the bifacial solar cell setup reduces stress due to mismatch thermal expansion, decreases metal use and increases high temperature efficiency. Efficiency improvement is accomplished in bifacial solar cells by capturing light from the back surface. Partially transparent wafers provide an option to improve near-infrared radiation absorption within Si wafer. To fully absorb optical radiation, three-dimensional texture of these kinds of wafers is essential. Pulsed laser interactions, thermal oxidation, and wet chemical etching are included in this research. A feature of its energy and pattern setup is the interaction of pulsed laser with Si, running at 1.064 μm wavelength and micro-second length. Two experimental settings were explored: (a) post-laser chemical etching with potassium hydro-oxide etching with thermal oxide as etching mask and (b) post-laser heat Si surface oxidation. Due to fast melting and recrystallization, laser pulsed processing inherently produces its own texture. Some of these spherically-shaped, randomly focused characteristics improve inner scattering and boost near-infrared absorption within the wafer. These characteristics are separated during chemical etching with the thermally-grown oxide layer as an etch mask. Comparison of optical absorption in both surfaces shows almost a rise in the magnitude of absorption in non-etched surfaces. Detailed optical (optical microscope and IR absorption), morphological (field emission scanning electron microscope) and heat imaging (far IR camera) analyses were performed to comprehend physical processes that contribute to near-IR absorption improvement. Such kinds of partially-transparent, three-dimensional textured Si wafers are anticipated to discover applications for bifacial solar cells as substrates.
    Matched MeSH terms: Infrared Rays
  7. Arsad FS, Hod R, Ahmad N, Ismail R, Mohamed N, Baharom M, et al.
    Int J Environ Res Public Health, 2022 Dec 06;19(23).
    PMID: 36498428 DOI: 10.3390/ijerph192316356
    BACKGROUND: This study aims to investigate the current impacts of extreme temperature and heatwaves on human health in terms of both mortality and morbidity. This systematic review analyzed the impact of heatwaves on mortality, morbidity, and the associated vulnerability factors, focusing on the sensitivity component.

    METHODS: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. Four databases (Scopus, Web of Science, EBSCOhost, PubMed) were searched for articles published from 2012 to 2022. Those eligible were evaluated using the Navigation Guide Systematic Review framework.

    RESULTS: A total of 32 articles were included in the systematic review. Heatwave events increased mortality and morbidity incidence. Sociodemographic (elderly, children, male, female, low socioeconomic, low education), medical conditions (cardiopulmonary diseases, renal disease, diabetes, mental disease), and rural areas were crucial vulnerability factors.

    CONCLUSIONS: While mortality and morbidity are critical aspects for measuring the impact of heatwaves on human health, the sensitivity in the context of sociodemographic, medical conditions, and locality posed a higher vulnerability to certain groups. Therefore, further research on climate change and health impacts on vulnerability may help stakeholders strategize effective plans to reduce the effect of heatwaves.

    Matched MeSH terms: Infrared Rays
  8. Nawfar SA, Yacob NB
    Singapore Med J, 2011 Sep;52(9):669-72.
    PMID: 21947144
    INTRODUCTION: Peripheral diabetic neuropathy, which is a cause of increasing morbidity and mortality following foot ulcers and amputations, is a burden to health and the economy. Various adjunct treatments to improve neuropathy have been introduced into the market; one such treatment is monochromatic infrared energy (MIRE) therapy, which claimed to produce promising results. This study aimed to evaluate the effects of MIRE on diabetic feet with peripheral neuropathy.
    METHODS: A randomised controlled, single-blinded study was conducted at Hospital Universiti Sains Malaysia from February 2008 to October 2008. A total of 30 feet from 24 patients were studied. Neuropathy was screened using the Michigan neuropathy scoring instrument, followed by an assessment of the current perception threshold using a neurometer at frequencies of 2,000 Hz, 250 Hz and 5 Hz. The feet were randomised to receive either daily MIRE or sham treatment for a total of 12 treatments. Each foot was then reassessed using the neurometer at six weeks and three months following treatment.
    RESULTS: The data obtained was analysed using a non-parametric test to compare the pre- and post-treatment groups. No significant difference was found between the neuropathic foot of diabetic patients in both the MIRE and sham groups.
    CONCLUSION: No improvement of neuropathy was observed following MIRE treatment in the neuropathic feet of diabetic patients.
    Matched MeSH terms: Infrared Rays/therapeutic use*
  9. Wan Mohd Zawawi WFA, Hibma MH, Salim MI, Jemon K
    Sci Rep, 2021 05 13;11(1):10278.
    PMID: 33986437 DOI: 10.1038/s41598-021-89740-0
    Breast cancer is the most common cancer that causes death in women. Conventional therapies, including surgery and chemotherapy, have different therapeutic effects and are commonly associated with risks and side effects. Near infrared radiation is a technique with few side effects that is used for local hyperthermia, typically as an adjuvant to other cancer therapies. The understanding of the use of near NIR as a monotherapy, and its effects on the immune cells activation and infiltration, are limited. In this study, we investigate the effects of HT treatment using NIR on tumor regression and on the immune cells and molecules in breast tumors. Results from this study demonstrated that local HT by NIR at 43 °C reduced tumor progression and significantly increased the median survival of tumor-bearing mice. Immunohistochemical analysis revealed a significant reduction in cells proliferation in treated tumor, which was accompanied by an abundance of heat shock protein 70 (Hsp70). Increased numbers of activated dendritic cells were observed in the draining lymph nodes of the mice, along with infiltration of T cells, NK cells and B cells into the tumor. In contrast, tumor-infiltrated regulatory T cells were largely diminished from the tumor. In addition, higher IFN-γ and IL-2 secretion was observed in tumor of treated mice. Overall, results from this present study extends the understanding of using local HT by NIR to stimulate a favourable immune response against breast cancer.
    Matched MeSH terms: Infrared Rays*
  10. Gan KB, Zahedi E, Mohd Ali MA
    IEEE Trans Biomed Eng, 2009 Aug;56(8):2075-82.
    PMID: 19403354 DOI: 10.1109/TBME.2009.2021578
    In obstetrics, fetal heart rate (FHR) detection remains the standard for intrapartum assessment of fetal well-being. In this paper, a low-power (< 55 mW) optical technique is proposed for transabdominal FHR detection using near-infrared photoplesthysmography (PPG). A beam of IR-LED (890 nm) propagates through to the maternal abdomen and fetal tissues, resulting in a mixed signal detected by a low-noise detector situated at a distance of 4 cm. Low-noise amplification and 24-bit analog-to-digital converter resolution ensure minimum effect of quantization noise. After synchronous detection, the mixed signal is processed by an adaptive filter to extract the fetal signal, whereas the PPG from the mother's index finger is the reference input. A total of 24 datasets were acquired from six subjects at 37 +/- 2 gestational weeks. Results show a correlation coefficient of 0.96 (p-value < 0.001) between the proposed optical and ultrasound FHR, with a maximum error of 4%. Assessment of the effect of probe position on detection accuracy indicates that the probe should be close to fetal tissues, but not necessarily restricted to head or buttocks.
    Matched MeSH terms: Infrared Rays
  11. Ferrando S, Agas D, Mirata S, Signore A, De Angelis N, Ravera S, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Oct;199:111627.
    PMID: 31536925 DOI: 10.1016/j.jphotobiol.2019.111627
    Photobiomodulation relies on the transfer of energy from incident photons to a cell photoacceptor. For many years the concept of photobiomodulation and its outcome has been based upon a belief that the sole receptor within the cell was the mitochondrion. Recently, it has become apparent that there are other photoacceptors operating in different regions of the electromagnetic spectrum. Alternative photoacceptors would appear to be water and mechanisms regulating calcium homeostasis, despite a direct effect of laser photonic energy on intracellular calcium concentration outwith mitochondrial activity or influence, have not been clearly demonstrated. Therefore, to increase the knowledge of intracellular‑calcium and laser photon interaction, as well as to demonstrate differences in irradiation profiles with modern hand-pieces, we tested and compared the photobiomodulatory effect of 808 nm and 980 nm diode laser light by low- and higher-energy (60s, 100 mW/cm2, 100 mW/cm2, 500 mW/cm2, 1000 mW/cm2, 1500 mW/cm2, 2000 mW/cm2) irradiated with a "standard" (Gaussian fluence distribution) hand-piece or with a "flat-top" (uniform fluence) hand-piece. For this purpose, we used the eukaryote unicellular-model Dictyostelium discoideum. The 808 nm and 980 nm infrared laser light, at the energy tested directly affect the stored Ca2+ homeostasis, independent of the mitochondrial respiratory chain activities. From an organism perspective, the effect on Ca2+-dependent signal transduction as the regulator of spore germination in Dictyostelium, demonstrates how a cell can respond quickly to the correct laser photonic stimulus through a different cellular pathway than the known light-chromophore(mitochondria) interaction. Additionally, both hand-piece designs tested were able to photobiomodulate the D. discoideum cell; however, the hand-piece with a flat-top profile, through uniform fluence levels allows more effective and reproducible effects.
    Matched MeSH terms: Infrared Rays
  12. Onwude DI, Hashim N, Chen G, Putranto A, Udoenoh NR
    J Sci Food Agric, 2021 Jan 30;101(2):398-413.
    PMID: 32627847 DOI: 10.1002/jsfa.10649
    BACKGROUND: Combined infrared (CIR) and convective drying is a promising technology in dehydrating heat-sensitive foods, such as fruits and vegetables. This novel thermal drying method, which involves the application of infrared energy and hot air during a drying process, can drastically enhance energy efficiency and improve overall product quality at the end of the process. Understanding the dynamics of what goes on inside the product during drying is important for further development, optimization, and upscaling of the drying method. In this study, a multiphase porous media model considering liquid water, gases, and solid matrix was developed for the CIR and hot-air drying (HAD) of sweet potato slices in order to capture the relevant physics and obtain an in-depth insight on the drying process. The model was simulated using Matlab with user-friendly graphical user interface for easy coupling and faster computational time.

    RESULTS: The gas pressure for CIR-HAD was higher centrally and decreased gradually towards the surface of the product. This implies that drying force is stronger at the product core than at the product surface. A phase change from liquid water to vapour occurs almost immediately after the start of the drying process for CIR-HAD. The evaporation rate, as expected, was observed to increase with increased drying time. Evaporation during CIR-HAD increased with increasing distance from the centreline of the sample surface. The simulation results of water and vapour flux revealed that moisture transport around the surfaces and sides of the sample is as a result of capillary diffusion, binary diffusion, and gas pressure in both the vertical and horizontal directions. The nonuniform dominant infrared heating caused the heterogeneous distribution of product temperature. These results suggest that CIR-HAD of food occurs in a non-uniform manner with high vapour and water concentration gradient between the product core and the surface.

    CONCLUSIONS: This study provides in-depth insight into the physics and phase changes of food during CIR-HAD. The multiphase model has the advantage that phase change and impact of CIR-HAD operating parameters can be swiftly quantified. Such a modelling approach is thereby significant for further development and process optimization of CIR-HAD towards industrial upscaling. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Infrared Rays
  13. Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA
    Biomed Mater, 2018 01 30;13(2):025009.
    PMID: 29182521 DOI: 10.1088/1748-605X/aa9dde
    Chitin ranks next to cellulose as the most important bio-polysaccharide which can primarily be extracted from crustacean shells. However, the emergence of new areas of the application of chitin and its derivatives are on the increase and there is growing demand for new chitin sources. In this study, therefore, an attempt was made to extract chitin from the house cricket (Brachytrupes portentosus) by a chemical method. The physicochemical properties of chitin and chitosan extracted from crickets were compared with commercial chitin and chitosan extracted from shrimps, in terms of proximate analysis in particular, of their ash and moisture content. Also, infrared spectroscopy, x-ray diffraction (XRD), scanning electron microscopy and elemental analysis were conducted. The chitin and chitosan yield of the house cricket ranges over 4.3%-7.1% and 2.4%-5.8% respectively. Chitin and chitosan from crickets compares favourably with those extracted from shrimps, and were found to exhibit some similarities. The result shows that cricket and shrimp chitin and chitosan have the same degree of acetylation and degree of deacetylation of 108.1% and 80.5% respectively, following Fourier transform infrared spectroscopy. The characteristic XRD strong/sharp peaks of 9.4 and 19.4° for α-chitin are common for both cricket and shrimp chitin. The percentage ash content of chitin and chitosan extracted from B. portentosus is 1%, which is lower than that obtained from shrimp products. Therefore, cricket chitin and chitosan can be said to be of better quality and of purer form than commercially produced chitin and chitosan from shrimp. Based on the quality of the product, chitin and chitosan isolated from B. portentosus can replace commercial chitin and chitosan in terms of utilization and applications. Therefore, B. portentosus is a promising alternative source of chitin and chitosan.
    Matched MeSH terms: Infrared Rays
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links