METHODS: Thirty male Wistar rats were given a 3 centimeter infra-umbilical laparotomy wound, in`flicted on their abdomen. The colonic transection was performed at 5 cm distal to caecum, with end to end anastomosis of colon segment. They were divided into two groups. Group I was fed with standard rat chow and water. Meanwhile, Group II apart from standard feed, was also given TH 1.0 g/kg every morning until day seven post operatively. Afterwards, anastomotic bursting pressures were measured and histopathological examination on the anastomosis line was performed with light microscopes. The data from two groups were analyzed by Independent paired t test for continuous variables.
RESULTS: It was found that the tensile strength of colon anastomosis (95 % CI; p = <0.001) and the histopathological study including fibroblast count (p = <0.001) and inflammatory cells (p = 0.002) showed statistically significant difference in the favor of TH-treated group. Meanwhile, neovascularization formation was not statistically significant (p = 0.807); however, the overall count in the TH group was high.
CONCLUSION: Oral treatment with TH enhances anastomotic wound healing by increasing the number of fibroblasts and by decreasing inflammatory cells leading towards increased wound strength.
RESULTS: Inulin decreased (P < 0.05) the average daily enteric H2 S and CH3 SH production by 12.4 and 12.1% respectively. The concentrations of acetate, propionate and butyrate in the large intestinal content were significantly increased (P < 0.05) with inulin treatment, whereas valerate concentration and MGL mRNA expression decreased (P < 0.05). The growth of Lactobacillus, Butyrivibrio, Pseudobutyrivibrio, Bifidobacterium and Clostridium butyricum was stimulated, while that of Desulfovibrio, the dominant SRB, was inhibited, and there was an accumulation of SO42- in the large intestinal content of the inulin-supplemented pigs, suggesting that inulin mitigates H2 S generation from the SO42- reduction pathway by reducing the growth of SRB.
CONCLUSION: The results showed that inulin mitigates CH3 SH generation via three methionine degradation metabolic pathways and H2 S generation from two cysteine degradation metabolic pathways, thus resulting in increased synthesis of these two sulfur-containing amino acids in the pig large intestine. © 2016 Society of Chemical Industry.