Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Moosavi S, Lai CW, Gan S, Zamiri G, Akbarzadeh Pivehzhani O, Johan MR
    ACS Omega, 2020 Aug 25;5(33):20684-20697.
    PMID: 32875202 DOI: 10.1021/acsomega.0c01905
    Since the turn of the 21st century, water pollution has been a major issue, and most of the pollution is generated by dyes. Adsorption is one of the most commonly used dye-removal methods from aqueous solution. Magnetic-particle integration in the water-treatment industry is gaining considerable attention because of its outstanding physical and chemical properties. Magnetic-particle adsorption technology shows promising and effective outcomes for wastewater treatment owing to the presence of magnetic material in the adsorbents that can facilitate separation through the application of an external magnetic field. Meanwhile, the introduction of activated carbon (AC) derived from various materials into a magnetic material can lead to efficient organic-dye removal. Therefore, this combination can provide an economical, efficient, and environmentally friendly water-purification process. Although activated carbon from low-cost and abundant materials has considerable potential in the water-treatment industry, the widespread applications of adsorption technology are limited by adsorbent recovery and separation after treatment. This work specifically and comprehensively describes the use of a combination of a magnetic material and an activated carbon material for dye adsorption in wastewater treatment. The literature survey in this mini-review provides evidence of the potential use of these magnetic adsorbents, as well as their magnetic separation and recovery. Future directions and challenges of magnetic activated carbon in wastewater treatment are also discussed in this paper.
    Matched MeSH terms: Magnetic Fields
  2. N. Sulaiman, B. Y. Majlis
    ASM Science Journal, 2013;7(1):27-36.
    MyJurnal
    Measurement of low magnetic field has played an important role in many electronics applications such as navigation, military, non-destructive test, traffic detection as well as medical diagnosis and treatment. The presence of magnetic field, particularly its strength and direction, can be measured using magnetometer. There are many types of magnetometers being investigated through the years and one of the prominent types is fluxgate magnetometer. The main components of fluxgate magnetometer consisting of driving coils, sensing coils and magnetic core are developed by MEMS silicon processing technology. In this paper, an investigation on physical characteristics of the three-dimensional coil structure for a micro-scaled fluxgate magnetometer is presented. The physical characteristics such as width of the coil, distance between successive coils, and gap between the top and bottom coils which would influence the magnetic energy in magnetometer is discussed. In this work, finite-element method simulations to investigate the physical characteristics of the sensing coils were carried out, where the parameter of interest is the coils’ inductance as well as the magnetic flux density. Based on the simulation results, the varying of physical characteristics of the coils had its effects particularly in coil inductance, magnetic flux density, and magnetic energy. It could also be seen that the simulated results agreed with the theoretical aspects of magnetism in a coil. From the investigations, suitable coil dimensions were proposed.
    Matched MeSH terms: Magnetic Fields
  3. Aldahoun MA, Jaafar MS, Al-Akhras MH, Bououdina M
    Artif Cells Nanomed Biotechnol, 2017 Jun;45(4):843-853.
    PMID: 27137748 DOI: 10.1080/21691401.2016.1178137
    Curcumin is more soluble in ethanol, dimethylsulfoxide, methanol and acetone than in water. In this study, nanocurcumin combined with 8 mT AC static magnetic field was used to enhance cellular uptake, bioavailability, and ultimate efficiency of curcumin against prostate cancer cell line (PC3), four bacteria strains (two Gram positive: Micrococcus luteus ATCC 9341, Staphylococcus aureus ATCC 29213 and two Gram negative: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), mammalian cell line (HEK) and human erythrocytes (RBC). The efficiency (E%) between IC50 of nanocurcumin combined with magnetic field (NANOCUR-MF) and control against PC3 was 35.93%, which is three times higher compared to curcumin combined with magnetic field (CUR-MF); i.e., 10.77%. However, their E% against HEK was not significant; 1.4% for NANOCUR-MF and 1.95% for CUR-MF. Moreover, depending in minimum bacterial concentration (MBC), the use of MF leads to a reduction of MBCs for all tested bacteria compared with control. The obtained results established the applicability of (MF) in enhancing cellular uptake for PC3 and tested bacteria strains by increasing the penetration of drug (nanocurcumin and parent curcumin) into cell with fixing mild cytotoxic profile for HEK and RBC.
    Matched MeSH terms: Magnetic Fields*
  4. Poznanski RR, Cacha LA, Latif AZA, Salleh SH, Ali J, Yupapin P, et al.
    Biosystems, 2019 Sep;183:103982.
    PMID: 31195028 DOI: 10.1016/j.biosystems.2019.103982
    We have further developed the two-brains hypothesis as a form of complementarity (or complementary relationship) of endogenously induced weak magnetic fields in the electromagnetic brain. The locally induced magnetic field between electron magnetic dipole moments of delocalized electron clouds in neuronal domains is complementary to the exogenous electromagnetic waves created by the oscillating molecular dipoles in the electro-ionic brain. In this paper, we mathematically model the operation of the electromagnetic grid, especially in regard to the functional role of atomic orbitals of dipole-bound delocalized electrons. A quantum molecular dynamic approach under quantum equilibrium conditions is taken to illustrate phase differences between quasi-free electrons tethered to an oscillating molecular core. We use a simplified version of the many-body problem to analytically solve the macro-quantum wave equation (equivalent to the Kohn-Sham equation). The resultant solution for the mechanical angular momentum can be used to approximate the molecular orbital of the dipole-bound delocalized electrons. In addition to non-adiabatic motion of the molecular core, 'guidance waves' may contribute to the delocalized macro-quantum wave functions in generating nonlocal phase correlations. The intrinsic magnetic properties of the origins of the endogenous electromagnetic field are considered to be a nested hierarchy of electromagnetic fields that may also include electromagnetic patterns in three-dimensional space. The coupling between the two-brains may involve an 'anticipatory affect' based on the conceptualization of anticipation as potentiality, arising either from the macro-quantum potential energy or from the electrostatic effects of residual charges in the quantum and classical subsystems of the two-brains that occurs through partitioning of the potential energy of the combined quantum molecular dynamic system.
    Matched MeSH terms: Electromagnetic Fields; Magnetic Fields
  5. Mhd Haniffa MAC, Ching YC, Illias HA, Munawar K, Ibrahim S, Nguyen DH, et al.
    Carbohydr Polym, 2021 Feb 01;253:117245.
    PMID: 33279000 DOI: 10.1016/j.carbpol.2020.117245
    Cellulose with ample hydroxyl groups is considered as a promising supportive biopolymer for fabricating cellulose supported promising magnetic sorbents (CMS) for magnetic solid-phase extraction (MSPE). The easy recovery via external magnetic field, and recyclability of CMS, associated with different types and surface modifications of cellulose has made them a promising sorbent in the field of solid-phase extraction. CMS based sorbent can offer improved adsorption and absorption capabilities due to its high specific surface area, porous structure, and magnetic attraction feature. This review mainly focuses on the fabrication strategies of CMS using magnetic nanoparticles (MNPs) and various forms of cellulose as a heterogeneous and homogeneous solution either in alkaline mediated urea or Ionic liquids (ILs). Moreover, CMS will be elaborated based on their structures, synthesis, physical performance, and chemical attraction of MNPs and their MSPE in details. The advantages, challenges, and prospects of CMS in future applications are also presented.
    Matched MeSH terms: Magnetic Fields
  6. Javad Sajjadi Shourije SM, Dehghan P, Bahrololoom ME, Cobley AJ, Vitry V, Pourian Azar GT, et al.
    Chemosphere, 2023 Mar;317:137829.
    PMID: 36640980 DOI: 10.1016/j.chemosphere.2023.137829
    In this study, fish scales (Pomadasys kaakan's scales) were used as new biosorbent for removing Ni2+ and Cu2+ ions from wastewater. The effects of electric and magnetic fields on the absorption efficiency were also investigated. The effects of sorbent content, ion concentration, contact time, pH, electric field (EF), and magnetic field (MF) on absorption efficiency were assertained. In addition, the isotherm of absorption was studied in this work. This study revealed that electric field and magnetic field have significant effects on the absorption efficiency of ions from wastewater. An increase in the electric field enhanced the removal percentage of the ions and accelerated the absorption process by up to 40% in comparison with the same condition without an electric field or a magnetic field. By increasing contact time from 10 to 120 min, the removal of Ni2+ ions was increased from 1% to 40% and for Cu2+ ions, the removal increased from 20% to almost 95%, respectively. In addition, increasing pH, ion concentration and scales dose increased removal percentage effectively. The results indicated that using fish scales for Cu2+ ions absorption is ideal due to the very high removal percentage (approximately 95%) without using either an electric or magnetic field.
    Matched MeSH terms: Magnetic Fields
  7. Elaina NS, Malik AS, Shams WK, Badruddin N, Abdullah JM, Reza MF
    Clin Neuroradiol, 2018 Jun;28(2):267-281.
    PMID: 28116447 DOI: 10.1007/s00062-017-0557-0
    PURPOSE: To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches.

    MATERIAL AND METHODS: Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests.

    RESULTS: The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches.

    CONCLUSION: Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.

    Matched MeSH terms: Magnetic Fields
  8. Abu Bakar NI, Chandren S, Attan N, Leaw WL, Nur H
    Front Chem, 2018;6:370.
    PMID: 30255010 DOI: 10.3389/fchem.2018.00370
    The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO2), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO2 and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified. The synthesis of 1-D-like TiO2 with liquid crystal as the structure-aligning agent was carried out using the sol-gel method under a magnetic field (0.3 T). The mixture of liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5CB), tetra-n-butyl orthotitanate (TBOT), 2-propanol, and water, was subjected to slow hydrolysis under a magnetic field. The TiO2-5CB took a well-aligned whiskerlike shape when the reaction mixture was placed under the magnetic field, while irregularly shaped TiO2-5CB particles were formed when no magnetic field was applied. It shows that the strong interaction between 5CB and TBOT during the hydrolysis process under a magnetic field controls the shape of titania. The intensity of the emission peaks in the photoluminescence spectrum of 1-D-like TiO2-5CB was lowered compared with the TiO2-5CB synthesized without the magnetic field, suggesting the occurrence of electron transfer from 5CB to the 1-D-like TiO2-5CB during ultraviolet irradiation. Apart from that, direct current electrical conductivity and Hall effect studies showed that the 1-D-like TiO2 composite enhanced electron mobility. Thus, the recombination of electrons and holes was delayed due to the increase in electron mobility; hence, the photocatalytic activity of the 1-D-like TiO2 composite in the oxidation of styrene in the presence of aqueous hydrogen peroxide under UV irradiation was enhanced. This suggests that the 1-D-like shape of TiO2 composite plays an important role in its photocatalytic activity.
    Matched MeSH terms: Magnetic Fields
  9. Jafar AB, Shafie S, Ullah I
    Heliyon, 2020 Jun;6(6):e04201.
    PMID: 32637680 DOI: 10.1016/j.heliyon.2020.e04201
    In this article, we numerically investigate the influence of thermal radiation and heat generation on the flow of an electrically conducting nanofluid past a nonlinear stretching sheet through a porous medium with frictional heating. The partial differential equations governing the flow problems are reduced to ordinary differential equations via similarity variables. The reduced equations are then solved numerically with the aid of Keller box method. The influence of physical parameters such as nanoparticle volume fraction ϕ, permeability parameter K, nonlinear stretching sheet parameter n, magnetic field parameter M, heat generation parameter Q and Eckert number Ec on the flow field, temperature distribution, skin friction and Nusselt number are studied and presented in graphical illustrations and tabular forms. The results obtained reveal that there is an enhancement in the rate of heat transfer with the rise in nanoparticle volume fraction and permeability parameter. The temperature distribution is also influenced with the presence of K, Q, R and ϕ. This shows that the solid volume fraction of nanoparticle can be used in controlling the behaviours of heat transfer and nanofluid flows.
    Matched MeSH terms: Magnetic Fields
  10. Samrot AV, Bhavya KS, Angalene JLA, Roshini SM, Preethi R, Steffi SM, et al.
    Int J Biol Macromol, 2020 Jun 15;153:1024-1034.
    PMID: 31751703 DOI: 10.1016/j.ijbiomac.2019.10.232
    Surface engineering of super paramagnetic iron oxide nanoparticles (SPIONs) favor the tagging of any molecule or compound onto it, encapsulating them with a biopolymer make them biocompatible and favor slow release of loaded molecules. Recovery of SPIONs is easier as they obey to external magnetic field. In this study, SPIONS were used for mosquito larvicidal activity after surface engineered with oleic acid to favor the tagging of Cyfluthrin (mosquito larvicidal agent), it was then encapsulated with gum polysaccharide derived from Azadirachta indica and Araucaria heterophylla. Every stage of coreshell formation was microscopically and spectroscopically characterized. The coreshell SPIONs produced using Azadirachta indica and Araucaria heterophylla gum derived polysaccharide encapsulation were found to be the size around 80 nm. Thus, prepared coreshell SPIONs was subjected for mosquito larvicidal activity against Culex sp. The coreshell SPIONs was efficiently killing the mosquito larva and its impact was studied by percentage mortality studies.
    Matched MeSH terms: Magnetic Fields
  11. Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH
    Int J Biol Macromol, 2024 Apr;264(Pt 2):130525.
    PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525
    To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
    Matched MeSH terms: Magnetic Fields
  12. Dabbagh A, Hedayatnasab Z, Karimian H, Sarraf M, Yeong CH, Madaah Hosseini HR, et al.
    Int J Hyperthermia, 2019;36(1):104-114.
    PMID: 30428737 DOI: 10.1080/02656736.2018.1536809
    PURPOSE: Although magnetite nanoparticles (MNPs) are promising agents for hyperthermia therapy, insufficient drug encapsulation efficacies inhibit their application as nanocarriers in the targeted drug delivery systems. In this study, porous magnetite nanoparticles (PMNPs) were synthesized and coated with a thermosensitive polymeric shell to obtain a synergistic effect of hyperthermia and chemotherapy.

    MATERIALS AND METHODS: PMNPs were produced using cetyltrimethyl ammonium bromide template and then coated by a polyethylene glycol layer with molecular weight of 1500 Da (PEG1500) and phase transition temperature of 48 ± 2 °C to endow a thermosensitive behavior. The profile of drug release from the nanostructure was studied at various hyperthermia conditions generated by waterbath, magnetic resonance-guided focused ultrasound (MRgFUS), and alternating magnetic field (AMF). The in vitro cytotoxicity and hyperthermia efficacy of the doxorubicin-loaded nanoparticles (DOX-PEG1500-PMNPs) were assessed using human lung adenocarcinoma (A549) cells.

    RESULTS: Heat treatment of DOX-PEG1500-PMNPs containing 235 ± 26 mg·g-1 DOX at 48 °C by waterbath, MRgFUS, and AMF, respectively led to 71 ± 4%, 48 ± 3%, and 74 ± 5% drug release. Hyperthermia treatment of the A549 cells using DOX-PEG1500-PMNPs led to 77% decrease in the cell viability due to the synergistic effects of magnetic hyperthermia and chemotherapy.

    CONCLUSION: The large pores generated in the PMNPs structure could provide a sufficient space for encapsulation of the chemotherapeutics as well as fast drug encapsulation and release kinetics, which together with thermosensitive characteristics of the PEG1500 shell, make DOX-PEG1500-PMNPs promising adjuvants to the magnetic hyperthermia modality.

    Matched MeSH terms: Magnetic Fields
  13. Mohamad N, Ubaidillah, Mazlan SA, Choi SB, Abdul Aziz SA, Sugimoto M
    Int J Mol Sci, 2019 Mar 27;20(7).
    PMID: 30934679 DOI: 10.3390/ijms20071525
    The transient response of magnetorheological (MR) materials, in general, is very important for design consideration in MR-based devices. Better response to magnetic fields is beneficial for a better response rate to the electrical current applied in the electromagnetic coil. As a result, MR-based devices would have a high response to external stimuli. In this work, the principal characteristics of magnetorheological greases (MRGs) which have two different particle shapes are experimentally investigated. One type of particle distributed in the grease medium is conventional spherical-shaped carbonyl iron (CI) particles, while the other is plate-like CI particles made using a high-energy rotary ball mill from spherical CI particles. A set of bidisperse MRG samples are firstly prepared by adjusting the weight percentage of the plate-like CI particles and mixing with the spherical CI particles. Subsequently, three important properties of MRGs in terms of their practical application are measured and compared between the two different particle shapes. The field-dependent apparent viscoelastic properties of the prepared MRG samples are measured, followed by the field-dependent storage and loss moduli using an oscillatory shear rheometer. In addition, the transient response time, which indicates the speed in the actuating period of MRGs, is measured by changing the strain amplitude. Then, a comparative assessment on the three properties are undertaken between two different particle shapes by presenting the corresponding results in the same plot. It is shown that the bidisperse MRG with plate-like CI particles exhibits an increase in the initial apparent viscosity as well as stiffness property compared to the MRG with spherical particles only.
    Matched MeSH terms: Magnetic Fields*
  14. Yunus NA, Mazlan SA, Ubaidillah, Abdul Aziz SA, Tan Shilan S, Abdul Wahab NA
    Int J Mol Sci, 2019 Feb 10;20(3).
    PMID: 30744210 DOI: 10.3390/ijms20030746
    Determination of the thermal characteristics and temperature-dependent rheological properties of the magnetorheological elastomers (MREs) is of paramount importance particularly with regards to MRE applications. Hitherto, a paucity of temperature dependent analysis has been conducted by MRE researchers. In this study, an investigation on the thermal and rheological properties of epoxidized natural rubber (ENR)-based MREs was performed. Various percentages of carbonyl iron particles (CIPs) were blended with the ENR compound using a two roll-mill for the preparation of the ENR-based MRE samples. The morphological, elemental, and thermal analyses were performed before the rheological test. Several characterizations, as well as the effects of the strain amplitude, temperature, and magnetic field on the rheological properties of ENR-based MRE samples, were evaluated. The micrographs and elemental results were well-correlated regarding the CIP and Fe contents, and a uniform distribution of CIPs was achieved. The results of the thermal test indicated that the incorporation of CIPs enhanced the thermal stability of the ENR-based MREs. Based on the rheological analysis, the storage modulus and loss factor were dependent on the CIP content and strain amplitude. The effect of temperature on the rheological properties revealed that the stiffness of the ENR-based MREs was considered stable, and they were appropriate to be employed in the MRE devices exposed to high temperatures above 45 °C.
    Matched MeSH terms: Magnetic Fields
  15. Hapipi NM, Mazlan SA, Ubaidillah U, Abdul Aziz SA, Ahmad Khairi MH, Nordin NA, et al.
    Int J Mol Sci, 2020 Mar 05;21(5).
    PMID: 32151055 DOI: 10.3390/ijms21051793
    Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long-term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples.
    Matched MeSH terms: Magnetic Fields*
  16. Aziz SAA, Mazlan SA, Ubaidillah U, Mohamad N, Choi SB, Che Aziz MA, et al.
    Int J Mol Sci, 2020 Nov 27;21(23).
    PMID: 33260840 DOI: 10.3390/ijms21239007
    Engineering rubber composites have been widely used as main components in many fields including vehicle engineering and biomedical applications. However, when a rubber composite surface area is exposed to heat or sunlight and over a long-term accelerated exposure and lifecycle of test, the rubber becomes hard, thus influencing the mechanical and rheological behavior of the materials. Therefore, in this study, the deterioration of rheological characteristics particularly the phase shift angle (δ) of silicone rubber (SR) based magnetorheological elastomer (MRE) is investigated under the effect of thermal aging. SR-MRE with 60 wt% of CIPs is fabricated and subjected to a continuous temperature of 100 °C for 72 h. The characterization of SR-MRE before and after thermal aging related to hardness, micrograph, and rheological properties are characterized using low vacuum scanning electron microscopy (LV-SEM) and a rheometer, respectively. The results demonstrated that the morphological analysis has a rough surface and more voids occurred after the thermal aging. The hardness and the weight of the SR-MRE before and after thermal aging were slightly different. Nonetheless, the thermo-rheological results showed that the stress-strain behavior have changed the phase-shift angle (δ) of SR-MRE particularly at a high strain. Moreover, the complex mechanism of SR-MRE before and after thermal aging can be observed through the changes of the 'in-rubber structure' under rheological properties. Finally, the relationship between the phase-shift angle (δ) and the in-rubber structure due to thermal aging are discussed thoroughly which led to a better understanding of the thermo-rheological behavior of SR-MRE.
    Matched MeSH terms: Magnetic Fields
  17. Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, et al.
    Int J Nanomedicine, 2023;18:3535-3575.
    PMID: 37409027 DOI: 10.2147/IJN.S375964
    Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
    Matched MeSH terms: Magnetic Fields
  18. Goodman G, Poznanski RR, Cacha L, Bercovich D
    J Integr Neurosci, 2015 Sep;14(3):281-93.
    PMID: 26477360 DOI: 10.1142/S0219635215500235
    Great advances have been made in signaling information on brain activity in individuals, or passing between an individual and a computer or robot. These include recording of natural activity using implants under the scalp or by external means or the reverse feeding of such data into the brain. In one recent example, noninvasive transcranial magnetic stimulation (TMS) allowed feeding of digitalized information into the central nervous system (CNS). Thus, noninvasive electroencephalography (EEG) recordings of motor signals at the scalp, representing specific motor intention of hand moving in individual humans, were fed as repetitive transcranial magnetic stimulation (rTMS) at a maximum intensity of 2.0[Formula: see text]T through a circular magnetic coil placed flush on each of the heads of subjects present at a different location. The TMS was said to induce an electric current influencing axons of the motor cortex causing the intended hand movement: the first example of the transfer of motor intention and its expression, between the brains of two remote humans. However, to date the mechanisms involved, not least that relating to the participation of magnetic induction, remain unclear. In general, in animal biology, magnetic fields are usually the poor relation of neuronal current: generally "unseen" and if apparent, disregarded or just given a nod. Niels Bohr searched for a biological parallel to complementary phenomena of physics. Pertinently, the two-brains hypothesis (TBH) proposed recently that advanced animals, especially man, have two brains i.e., the animal CNS evolved as two fundamentally different though interdependent, complementary organs: one electro-ionic (tangible, known and accessible), and the other, electromagnetic (intangible and difficult to access) - a stable, structured and functional 3D compendium of variously induced interacting electro-magnetic (EM) fields. Research on the CNS in health and disease progresses including that on brain-brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest.
    Matched MeSH terms: Magnetic Fields
  19. Yahya N, Akhtar MN, Nasir N, Shafie A, Jabeli MS, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8100-9.
    PMID: 23421185
    In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.
    Matched MeSH terms: Magnetic Fields
  20. Hanani Abdul Manan, Zamzuri Idris, Jafri Malin Abdullah, Mohammed Faruque Reza, Hazim Omar
    MyJurnal
    Neuroplasticity has been subjected to a great deal of research in the last century. Recently, significant emphasis has been
    placed on the global effect of localized plastic changes throughout the central nervous system, and on how these changes
    integrate in a pathological context. The present study aimed to demonstrate the functional cortical reorganization before
    and after surgery using magnetoencephalography (MEG) in a participant with brain tumor. Results of Visual Evoked
    Magnetic Field (VEF) based on functional MEG study revealed significantly different of MEG N100 waveforms before and
    after surgery. Larger and additional new locations for visual activation areas after the surgery were found suggesting
    neuroplasticity. The present study highlight a physiological plasticity in a teenage brain and the alterations regarding
    neural plasticity and network remodeling described in pathological contexts in higher-order visual association areas.
    Matched MeSH terms: Magnetic Fields
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links