Displaying publications 1 - 20 of 93 in total

Abstract:
Sort:
  1. Zin NM, Al-Shaibani MM, Jalil J, Sukri A, Al-Maleki AR, Sidik NM
    Arch Microbiol, 2020 Oct;202(8):2083-2092.
    PMID: 32494868 DOI: 10.1007/s00203-020-01896-x
    Chloramphenicol (CAP) and cyclo-(L-Val-L-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(L-Val-L-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(L-Val-L-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(L-Val-L-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(L-Val-L-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  2. Zajmi A, Mohd Hashim N, Noordin MI, Khalifa SA, Ramli F, Mohd Ali H, et al.
    PLoS One, 2015;10(6):e0128157.
    PMID: 26030925 DOI: 10.1371/journal.pone.0128157
    Staphylococci are facultative anaerobes, perfectly spherical un-encapsulated cocci, with a diameter not exceeding 1 micrometer in diameter. Staphylococcus aureus are generally harmless and remain confined to the skin unless they burrow deep into the body, causing life-threatening infections in bones, joints, bloodstream, heart valves and lungs. Among the 20 medically important staphylococci species, Staphylococcus aureus is one of the emerging human pathogens. Streptomycin had its highest potency against Staphylococcus infections despite the likelihood of getting a resistant type of staphylococcus strains. Methicillin-resistant S. aureus (MRSA) is the persister type of Staphylococcus aureus and was evolved after decades of antibiotic misuse. Inadequate penetration of the antibiotic is one of the principal factors related to success/failure of the therapy. The active drug needs to reach the bacteria at concentrations necessary to kill or suppress the pathogen's growth. In turn the effectiveness of the treatment relied on the physical properties of Staphylococcus aureus. Thus understanding the cell integrity, shape and roughness is crucial to the overall influence of the therapeutic agent on S. aureus of different origins. Hence our experiments were designed to clarify ultrastructural changes of S. aureus treated with streptomycin (synthetic compound) in comparison to artonin E (natural compound). In addition to the standard in vitro microbial techniques, we used transmission electron microscopy to study the disrupted cell architecture under antibacterial regimen and we correlate this with scanning electron microscopy (SEM) to compare results of both techniques.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  3. Zaidan MR, Noor Rain A, Badrul AR, Adlin A, Norazah A, Zakiah I
    Trop Biomed, 2005 Dec;22(2):165-70.
    PMID: 16883283 MyJurnal
    Medicinal plants have many traditional claims including the treatment of ailments of infectious origin. In the evaluation of traditional claims, scientific research is important. The objective of the study was to determine the presence of antibacterial activity in the crude extracts of some of the commonly used medicinal plants in Malaysia, Andrographis paniculata, Vitex negundo, Morinda citrifolia, Piper sarmentosum, and Centella asiatica. In this preliminary investigation, the leaves were used and the crude extracts were subjected to screening against five strains of bacteria species, Methicillin Resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli, using standard protocol of Disc Diffusion Method (DDM). The antibacterial activities were assessed by the presence or absence of inhibition zones and MIC values. M. citrifolia, P. sarmentosum and C. asiatica methanol extract and A. paniculata (water extract) have potential antibacterial activities to both gram positive S. aureus and Methicillin Resistant S. aureus (MRSA). None of the five plant extracts tested showed antibacterial activities to gram negative E. coli and K. pneumoniae, except for A. paniculata and P. sarmentosum which showed activity towards P. aeruginosa. A. paniculata being the most potent at MIC of 2 g/disc. This finding forms a basis for further studies on screening of local medicinal plant extracts for antibacteria properties.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  4. Yip CH, Mahalingam S, Wan KL, Nathan S
    PLoS One, 2021;16(6):e0253445.
    PMID: 34161391 DOI: 10.1371/journal.pone.0253445
    Prodigiosin, a red linear tripyrrole pigment, has long been recognised for its antimicrobial property. However, the physiological contribution of prodigiosin to the survival of its producing hosts still remains undefined. Hence, the aim of this study was to investigate the biological role of prodigiosin from Serratia marcescens, particularly in microbial competition through its antimicrobial activity, towards the growth and secreted virulence factors of four clinical pathogenic bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa) as well as Staphylococcus aureus and Escherichia coli. Prodigiosin was first extracted from S. marcescens and its purity confirmed by absorption spectrum, high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). The extracted prodigiosin was antagonistic towards all the tested bacteria. A disc-diffusion assay showed that prodigiosin is more selective towards Gram-positive bacteria and inhibited the growth of MRSA, S. aureus and E. faecalis and Gram-negative E. coli. A minimum inhibitory concentration of 10 μg/μL of prodigiosin was required to inhibit the growth of S. aureus, E. coli and E. faecalis whereas > 10 μg/μL was required to inhibit MRSA growth. We further assessed the effect of prodigiosin towards bacterial virulence factors such as haemolysin and production of protease as well as on biofilm formation. Prodigiosin did not inhibit haemolysis activity of clinically associated bacteria but was able to reduce protease activity for MRSA, E. coli and E. faecalis as well as decrease E. faecalis, Salmonella Typhimurium and E. coli biofilm formation. Results of this study show that in addition to its role in inhibiting bacterial growth, prodigiosin also inhibits the bacterial virulence factor protease production and biofilm formation, two strategies employed by bacteria in response to microbial competition. As clinical pathogens were more resistant to prodigiosin, we propose that prodigiosin is physiologically important for S. marcescens to compete against other bacteria in its natural soil and surface water environments.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  5. Yap JKY, Tan SYY, Tang SQ, Thien VK, Chan EWL
    Microb Drug Resist, 2021 Feb;27(2):234-240.
    PMID: 32589487 DOI: 10.1089/mdr.2020.0178
    Aims: Currently, limited antibiotics are available to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. One approach is the use of adjuvants in antibiotic therapy. 1,4-Naphthoquinones are naturally occurring alkaloids shown to have antibacterial properties. The objective of this study is to investigate the synergy between 1,4-naphthoquinone and selected β-lactam antibiotics and to evaluate the potential use of 1,4-naphthoquinone as an adjuvant in antibiotic treatment against MRSA infections. Methods: The antibacterial activity of 1,4-naphthoquinone and plumbagin was tested against nine pathogenic bacterial strains using the microdilution broth method. The interactions between 1,4-naphthoquinone and three antibiotics (cefuroxime, cefotaxime, and imipenem) were estimated by calculating the fractional inhibitory concentration of the combination. Results: The compounds 1,4-naphthoquinone and plumbagin exhibited a broad range of bacteriostatic and bactericidal effects against both Gram-positive and Gram-negative bacteria. The interaction between 1,4-naphthoquinone and imipenem, cefuroxime, and cefotaxime was synergistic against methicillin-sensitive Staphylococcus aureus and MRSA clinical strains. Against ATCC-cultured MRSA, a synergistic effect was observed between 1,4-naphthoquinone and cefotaxime. However, combination with imipenem only produced an additive effect, and an antagonistic action was observed between 1,4-naphthoquinone and cefuroxime. Conclusions: Although individually less potent than common antibiotics, 1,4-naphthoquinone acts synergistically with imipenem, cefuroxime, and cefotaxime against MRSA clinical strains and could potentially be used in adjuvant-antibiotic therapy against multidrug resistant bacteria.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  6. Winnie FYM, Siddiqui R, Sagathevan K, Khan NA
    Curr Pharm Biotechnol, 2020;21(5):425-437.
    PMID: 31577204 DOI: 10.2174/1389201020666191002153435
    BACKGROUND: Snakes feed on germ-infested rodents, while water monitor lizards thrive on rotten matter in unhygienic conditions. We hypothesize that such creatures survive the assault of superbugs and are able to fend off disease by producing antimicrobial substances. In this study, we investigated the potential antibacterial activity of sera/lysates of animals living in polluted environments.

    METHODS: Snake (Reticulatus malayanus), rats (Rattus rattus), water monitor lizard (Varanus salvator), frog (Lithobates catesbeianus), fish (Oreochromis mossambicus), chicken (Gallus gallus domesticus), and pigeon (Columba livia) were dissected and their organ lysates/sera were collected. Crude extracts were tested for bactericidal effects against neuropathogenic E. coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus cereus and Klebsiella pneumoniae. To determine whether lysates/sera protect human cells against bacterialmediated damage, cytotoxicity assays were performed by measuring lactate dehydrogenase release as an indicator of cell death. Lysates/sera were partially characterized using heat-treatment and pronasetreatment and peptide sequences were determined using the Liquid Chromatography Mass Spectrometry (LC-MS).

    RESULTS: Snake and water monitor lizard sera exhibited potent broad-spectrum bactericidal effects against all bacteria tested. Heat inactivation and pronase-treatment inhibited bactericidal effects indicating that activity is heat-labile and pronase-sensitive suggesting that active molecules are proteinaceous in nature. LCMS analyses revealed the molecular identities of peptides.

    CONCLUSION: The results revealed that python that feeds on germ-infested rodents and water monitor lizards that feed on rotten organic waste possess antibacterial activity in a heat-sensitive manner and several peptides were identified. We hope that the discovery of antibacterial activity in the sera of animals living in polluted environments will stimulate research in finding antibacterial agents from unusual sources as this has the potential for the development of novel strategies in the control of infectious diseases.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  7. Wan Nor Amilah WA, Masrah M, Hasmah A, Noor Izani NJ
    Trop Biomed, 2014 Dec;31(4):680-8.
    PMID: 25776593 MyJurnal
    Antimicrobial activities of plants have long been evaluated for their promising use as antimicrobial agent and in minimizing the unwanted resistance effects of microorganisms. The study was conducted to evaluate the antibacterial activity of Quercus infectoria gall crude extracts against multidrug resistant (MDR) bacteria in vitro. The screening test was determined by disc diffusion technique using sterile filter paper discs impregnated with 1 mg/ disc (50 mg/ml) aqueous and ethanol extracts of Q. infectoria galls tested on five selected MDR bacterial strains. The minimum inhibitory concentration (MIC) was determined using the twofold serial micro dilution technique at concentration ranging from 5.00 mg/ml to 0.01 mg/ml. The minimum bactericidal concentration (MBC) was determined by sub culturing the microtitre wells showing no turbidity on the agar plate to obtain the MBC value. Both extracts showed substantial inhibitory effects against methicillin resistant coagulase negative Staphylococcus (MRCoNS) and methicillin resistant Staphylococcus aureus (MRSA). A slightly reduced inhibitory zone diameter was observed with MDR Acinetobacter sp. while no inhibitory effect was displayed among the extended spectrum beta lactamases (ESBL) K. pneumoniae and ESBL E. coli isolates. A significant difference in the zone sizes between both extracts was only observed in MRSA (p < 0.05). The MIC values ranged from 0.08 mg/ml to 0.63 mg/ml for aqueous and ethanol extracts against MRSA, MRCoNS and MDR Acinetobacter sp. while their MBC to MIC ratio values were 2 and less. The Q. infectoria gall extracts have shown very promising in vitro antibacterial activities and may be considered as a potentially good source of antimicrobial agent especially against MDR Gram positive bacteria.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  8. Valle DLJ, Puzon JJM, Cabrera EC, Cena-Navarro RB, Rivera WL
    Trop Biomed, 2021 Jun 01;38(2):134-142.
    PMID: 34172702 DOI: 10.47665/tb.38.2.049
    This study aimed to determine the in vivo effectiveness of the ethanolic extract of Piper betle L. leaves against Staphylococcus aureus-infected wounds in mice and its antimicrobial properties on clinical isolates of multiple drug-resistant bacterial pathogens. Twenty mice were divided into four groups. Wounds were created in all mice under anesthesia by excision from the dorsal skin down to the subcutaneous fat and inoculating with S. aureus. After 24 h, the wound of each mouse was treated once daily by application of the respective cream. Group I was treated with mupirocin antibacterial cream; Group II received a cream base containing no active ingredient; Groups III and IV were treated with 2.5% and 5.0% concentrations of P. betle cream, respectively. Further, an in vitro study was performed by adding undiluted, 1:50 and 1:100 dilutions of the four studied creams in normal saline containing 1.5 × 108 CFU/mL of the following bacteria: antimicrobial-susceptible S. aureus, Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant S. aureus, extended-spectrum β-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus, metallo-βlactamase-producing P. aeruginosa and carbapenem-resistant Klebsiella pneumoniae. The mice in Groups III and IV had significantly faster wound contraction and significantly shorter reepithelialization time than Group II (p < 0.05), which were not significantly different from Group I (p > 0.05). P. betle creams inhibited all studied bacterial strains at full concentration and at a dilution of 1:50. The inhibitory effect was more significant than Groups I and II (p < 0.05), except on S. aureus. Specifically, S. aureus inhibition was not significantly different for Groups III and IV (p > 0.05) when compared with Group I. Cream formulations derived from P. betle ethanolic extract have great potential as antimicrobial agents for the treatment of wound infection. Further clinical tests are recommended to determine the safety and efficacy of these formulations in other mammalian species.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  9. Tiwari S, Sahu M, Rautaraya B, Karuna T, Mishra SR, Bhattacharya S
    J Indian Med Assoc, 2011 Nov;109(11):800-1.
    PMID: 22666934
    Methicillin-resistant Staphylococcus aureus (MRSA) emerged as a nosocomial pathogen in early 1960s, causing Increasing number of outbreaks in 19708, first reported in a teaching hospital in Malaysia in 1972, causing increased mortality, morbidity, and healthcare costs. Aim of this study is to screen out MRSA from various clinical samples and to see their antibiotic susceptibility pattern. From May 2008 to May 2009, 204 S aureus strains were isolated, out of which 114 (55.8%) were MRSA, and rest methicillin-sensitive Staphylococcus aureus (MSSA). Most of the MRSA strains were obtained from pus (45%) followed by urine (20.5%). Frequency of isolating MRSA were maximum in catheter tip (80%) followed by blood (66.7%) and pus (58.7%). MRSA strains were showing 100% sensitivity to vancomycin and Iinezolid, whereas 92.9% to teicoplanin. Therefore it is concluded that antibiotics other than vancomycin can be used as anti-MRSA agents after sensitivity test, as well as irrational and indiscriminate use of antibiotics can be avoided.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  10. Thong KL, Junnie J, Liew FY, Yusof MY, Hanifah YA
    J Microbiol Biotechnol, 2009 Oct;19(10):1265-70.
    PMID: 19884790
    The objectives of this study were to determine the antibiotypes, SCCmec subtypes, PVL carriage, and genetic diversity of MRSA strains from a tertiary hospital. Sixtysix MRSA strains were selected randomly (2003, 2004, and 2007) and tested for the Panton-Valentine leukocidin gene, mecA gene, and SCCmec type via a PCR. The antibiograms were determined using a standard disc diffusion method, and the genetic diversity of the isolates was determined by PFGE. Thirty-four antibiograms were obtained, with 55% of the 66 strains exhibiting resistance to more than 4 antimicrobials. All the isolates remained susceptible to vancomycin, and low resistance rates were noted for fusidic acid (11%), rifampicin (11%), and clindamycin acid (19%). The MRSA isolates that were multisensitive (n=12) were SCCmec type IV, whereas the rest (multiresistant) were SCCmec type III. Only two isolates (SCCmec type IV) tested positive for PVL, whereas all the isolates were mecA-positive. The PFGE was very discriminative and subtyped the 66 isolates into 55 pulsotypes (F=0.31-1.0). The multisensitive isolates were distinctly different from the multidrug-resistant MRSA. In conclusion, no vancomycin-resistant isolate was observed. The Malaysian MDR MRSA isolates were mostly SCCmec type III and negative for PVL. These strains were genetically distinct from the SCCmec type IV strains, which were sensitive to SXT, tetracycline, and erythromycin. Only two strains were SCCmec IV and PVL-positive. The infections in the hospital concerned were probably caused by multiple subtypes of MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  11. Teow SY, Ali SA
    Pak J Pharm Sci, 2016 Nov;29(6):2119-2124.
    PMID: 28375134
    Peptides derived from HIV-1 transmembrane proteins have been extensively studied for antimicrobial activities, and they are known as antimicrobial peptides (AMPs). These AMPs have also been reported to potently combat the drug-resistant microbes. In this study, we demonstrated that peptide #6383 originated from HIV-1 MN strain membrane-spanning domain of gp41 was active (2-log reductions) at 100βg/mL (56.5βM) against methicillin-resistant Staphylococcus aureus (MRSA) in 10% and 50% human plasma-supplemented phosphate buffered saline (PBS). The activity was further enhanced (3-log reductions) in the presence of 5% human serum albumin (HSA) alone. All bactericidal activities were achieved within 6 hours. At 100μg/mL, the peptide showed only 13% toxicity against human erythrocytes. This peptide can serve as an attractive template for a design of a novel peptide antibiotic against drug-resistant bacteria. By sequence-specific engineering or modifications, we anticipated that the bactericidal activity and the reduced toxicity against human erythrocytes will be improved.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  12. Teh SS, Ee GC, Mah SH, Yong YK, Lim YM, Rahmani M, et al.
    Biomed Res Int, 2013;2013:517072.
    PMID: 24089682 DOI: 10.1155/2013/517072
    The in vitro cytotoxicity tests on the extracts of Mesua beccariana, M. ferrea, and M. congestiflora against Raji, SNU-1, HeLa, LS-174T, NCI-H23, SK-MEL-28, Hep-G2, IMR-32, and K562 were achieved using MTT assay. The methanol extracts of Mesua beccariana showed its potency towards the proliferation of B-lymphoma cell (Raji). In addition, only the nonpolar to semipolar extracts (hexane to ethyl acetate) of the three Mesua species indicated cytotoxic effects on the tested panel of human cancer cell lines. Antioxidant assays were evaluated using DPPH scavenging radical assay and Folin-Ciocalteu method. The methanol extracts of M. beccariana and M. ferrea showed high antioxidant activities with low EC₅₀ values of 12.70 and 9.77  μg/mL, respectively, which are comparable to that of ascorbic acid (EC₅₀ = 5.62  μg/mL). Antibacterial tests were carried out using four Gram positive and four Gram negative bacteria on Mesua beccariana extracts. All the extracts showed negative results in the inhibition of Gram negative bacteria. Nevertheless, methanol extracts showed some activities against Gram positive bacteria which are Bacillus cereus, methicillin-sensitive Staphylococcus aureus (MSSA), and methicillin-resistant Staphylococcus aureus (MRSA), while the hexane extract also contributed some activities towards Bacillus cereus.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  13. Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL
    BMC Microbiol, 2017 Feb 16;17(1):36.
    PMID: 28209130 DOI: 10.1186/s12866-017-0936-3
    BACKGROUND: Antimicrobial resistance is currently a major global issue. As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, particularly against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). The ability of fly larvae to thrive in septic habitats has prompted us to determine the antibacterial activity and minimum inhibitory concentrations (MICs) of larval extract of flies, namely Lucilia cuprina, Sarcophaga peregrina and Musca domestica against 4 pathogenic bacteria [Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa and Escherichia coli] via a simple and sensitive antibacterial assay, resazurin-based turbidometric (TB) assay as well as to demonstrate the preliminary chemical profile of larval extracts using gas chromatography-mass spectrophotometry (GC-MS).

    RESULTS: The resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml(-1). Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica.

    CONCLUSION: The resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  14. Tan CS, Aqiludeen NA, Tan R, Gowbei A, Mijen AB, Santhana Raj L, et al.
    Med J Malaysia, 2020 03;75(2):110-116.
    PMID: 32281590
    INTRODUCTIONS: The emergence of multidrug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) complicates the treatment of the simplest infection. Although glycopeptides such as vancomycin still proves to be effective in treating MRSA infections, the emergence of vancomycin-resistant strains limits the long term use of this antibiotic. Bacteriophages are ubiquitous bacterial viruses which is capable of infecting and killing bacteria including its antibiotic-resistant strains. Bactericidal bacteriophages use mechanisms that is distinct from antibiotics and is not affected by the antibioticresistant phenotypes.

    OBJECTIVES: The study was undertaken to evaluate the possibility to isolate bacteriolytic bacteriophages against S.aureus from raw sewage water and examine their efficacy as antimicrobial agents in vitro.

    METHODS: Bacteriophages were isolated from the raw sewage using the agar overlay method. Isolated bacteriophages were plaque purified to obtain homogenous bacteriophage isolates. The host range of the bacteriophages was determined using the spot test assay against the 25 MRSA and 36 MSSA isolates obtained from the Sarawak General Hospital. Staphylococcus saprophyticus, Staphylococcus sciuri and Staphylococcus xylosus were included as non-SA controls. The identity of the bacteriophages was identified via Transmission Electron Microscopy and genomic size analysis. Their stability at different pH and temperature were elucidated.

    RESULTS: A total of 10 lytic bacteriophages infecting S.aureus were isolated and two of them namely ΦNUSA-1 and ΦNUSA-10 from the family of Myoviridae and Siphoviridae respectively exhibited exceptionally broad host range against >80% of MRSA and MSSA tested. Both bacteriophages were specific to S.aureus and stable at both physiologic pH and temperature.

    CONCLUSION: This study demonstrated the abundance of S.aureus specific bacteriophages in raw sewage. Their high virulence against both MSSA and MRSA is an excellent antimicrobial characteristic which can be exploited for bacteriophage therapy against MRSA.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  15. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  16. Shamsudin MN, Alreshidi MA, Hamat RA, Alshrari AS, Atshan SS, Neela V
    J Hosp Infect, 2012 Jul;81(3):206-8.
    PMID: 22633074 DOI: 10.1016/j.jhin.2012.04.015
    The minimum inhibitory concentrations (MICs) of 60 meticillin-resistant Staphylococcus aureus (MRSA) isolates from Malaysia to three antiseptic agents - benzalkonium chloride (BZT), benzethonium chloride (BAC) and chlorhexidine digluconate (CHG) - were determined. All isolates had MICs ranging from 0.5 to 2 mg/L. Antiseptic resistance genes qacA/B and smr were detected in 83.3% and 1.6% of the isolates, respectively. Carriage of qacA/B correlated with reduced susceptibility to CHG and BAC. This is the first report of the prevalence of qacA/B and smr gene carriage in Malaysian MRSA isolates, with a high frequency of qacA/B carriage. The presence of these antiseptic resistance genes and associated reduced susceptibility to antiseptic agents may have clinical implications.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  17. Shameli K, Ahmad MB, Zargar M, Yunus WM, Rustaiyan A, Ibrahim NA
    Int J Nanomedicine, 2011;6:581-90.
    PMID: 21674015 DOI: 10.2147/IJN.S17112
    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO(3) and NaBH(4) were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO(3). The interlamellar space limits changed little (d-spacing = 1.24-1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19-8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO(3)/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  18. Shameli K, Ahmad MB, Yunus WM, Rustaiyan A, Ibrahim NA, Zargar M, et al.
    Int J Nanomedicine, 2010 Oct 22;5:875-87.
    PMID: 21116328 DOI: 10.2147/IJN.S13632
    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO(3) were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller-Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  19. Santiago C, Lim KH, Loh HS, Ting KN
    Molecules, 2015 Mar 10;20(3):4473-82.
    PMID: 25764489 DOI: 10.3390/molecules20034473
    Formation of biofilms is a major factor for nosocomial infections associated with methicillin-resistance Staphylococcus aureus (MRSA). This study was carried out to determine the ability of a fraction, F-10, derived from the plant Duabanga grandiflora to inhibit MRSA biofilm formation. Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of F-10, while latex agglutination test was performed to study the influence of F-10 on penicillin-binding protein 2a (PBP2a) level in MRSA biofilm. PBP2a is a protein that confers resistance to beta-lactam antibiotics. The results showed that, F-10 at minimum inhibitory concentration (MIC, 0.75 mg/mL) inhibited biofilm production by 66.10%; inhibited cell-surface attachment by more than 95%; and a reduced PBP2a level in the MRSA biofilm was observed. Although ampicilin was more effective in inhibiting biofilm production (MIC of 0.05 mg/mL, 84.49%) compared to F-10, the antibiotic was less effective in preventing cell-surface attachment. A higher level of PBP2a was detected in ampicillin-treated MRSA showing the development of further resistance in these colonies. This study has shown that F-10 possesses anti-biofilm activity, which can be attributed to its ability to reduce cell-surface attachment and attenuate the level of PBP2a that we postulated to play a crucial role in mediating biofilm formation.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  20. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN
    Biomed Res Int, 2014;2014:965348.
    PMID: 25101303 DOI: 10.1155/2014/965348
    The inhibitory activity of a semipure fraction from the plant, Acalypha wilkesiana assigned as 9EA-FC-B, alone and in combination with ampicillin, was studied against methicillin-resistant Staphylococcus aureus (MRSA). In addition, effects of the combination treatment on PBP2a expression were investigated. Microdilution assay was used to determine the minimal inhibitory concentrations (MIC). Synergistic effects of 9EA-FC-B with ampicillin were determined using the fractional inhibitory concentration (FIC) index and kinetic growth curve assay. Western blot experiments were carried out to study the PBP2a expression in treated MRSA cultures. The results showed a synergistic effect between ampicillin and 9EA-FC-B treatment with the lowest FIC index of 0.19 (synergism ≤ 0.5). The presence of 9EA-FC-B reduced the MIC of ampicillin from 50 to 1.56 μg mL(-1). When ampicillin and 9EA-FC-B were combined at subinhibitory level, the kinetic growth curves were suppressed. The antibacterial effect of 9EA-FC-B and ampicillin was shown to be synergistic. The synergism is due the ability of 9EA-FC-B to suppress the activity of PBP2a, thus restoring the susceptibility of MRSA to ampicillin. Corilagin was postulated to be the constituent responsible for the synergistic activity showed by 9EA-FC-B.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links