Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Chung PY, Navaratnam P, Chung LY
    PMID: 21658242 DOI: 10.1186/1476-0711-10-25
    There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA) which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin) against reference strains of Staphylococcus aureus.
    Matched MeSH terms: Staphylococcal Infections/drug therapy
  2. Norazah A, Salbiah N, Nurizzat M, Santhana R
    Med J Malaysia, 2009 Jun;64(2):166-7.
    PMID: 20058580 MyJurnal
    A 64-year old patient, who had bacteraemia, did not respond to vancomycin despite the MRSA isolate being sensitive to the antibiotic at MIC 2 microg/mL. Electron microscopy of the MRSA isolate showed thickening of the cell wall, which was not observed in MRSA with lower vancomycin MIC.
    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  3. Tan CS, Aqiludeen NA, Tan R, Gowbei A, Mijen AB, Santhana Raj L, et al.
    Med J Malaysia, 2020 03;75(2):110-116.
    PMID: 32281590
    INTRODUCTIONS: The emergence of multidrug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) complicates the treatment of the simplest infection. Although glycopeptides such as vancomycin still proves to be effective in treating MRSA infections, the emergence of vancomycin-resistant strains limits the long term use of this antibiotic. Bacteriophages are ubiquitous bacterial viruses which is capable of infecting and killing bacteria including its antibiotic-resistant strains. Bactericidal bacteriophages use mechanisms that is distinct from antibiotics and is not affected by the antibioticresistant phenotypes.

    OBJECTIVES: The study was undertaken to evaluate the possibility to isolate bacteriolytic bacteriophages against S.aureus from raw sewage water and examine their efficacy as antimicrobial agents in vitro.

    METHODS: Bacteriophages were isolated from the raw sewage using the agar overlay method. Isolated bacteriophages were plaque purified to obtain homogenous bacteriophage isolates. The host range of the bacteriophages was determined using the spot test assay against the 25 MRSA and 36 MSSA isolates obtained from the Sarawak General Hospital. Staphylococcus saprophyticus, Staphylococcus sciuri and Staphylococcus xylosus were included as non-SA controls. The identity of the bacteriophages was identified via Transmission Electron Microscopy and genomic size analysis. Their stability at different pH and temperature were elucidated.

    RESULTS: A total of 10 lytic bacteriophages infecting S.aureus were isolated and two of them namely ΦNUSA-1 and ΦNUSA-10 from the family of Myoviridae and Siphoviridae respectively exhibited exceptionally broad host range against >80% of MRSA and MSSA tested. Both bacteriophages were specific to S.aureus and stable at both physiologic pH and temperature.

    CONCLUSION: This study demonstrated the abundance of S.aureus specific bacteriophages in raw sewage. Their high virulence against both MSSA and MRSA is an excellent antimicrobial characteristic which can be exploited for bacteriophage therapy against MRSA.

    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  4. Ong JS, Taylor TD, Yong CC, Khoo BY, Sasidharan S, Choi SB, et al.
    Probiotics Antimicrob Proteins, 2020 03;12(1):125-137.
    PMID: 30659503 DOI: 10.1007/s12602-018-9505-9
    This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p 
    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  5. Norazah A, Liew SM, Kamel AG, Koh YT, Lim VK
    Singapore Med J, 2001 Jan;42(1):15-9.
    PMID: 11361232
    To determine and compare the pulsed-field gel electrophoresis (PFGE) patterns of endemic MRSA strains in 2 major Malaysian hospitals and to compare the PFGE patterns with antibiotypes of the strains studied.
    Matched MeSH terms: Staphylococcal Infections/drug therapy
  6. Puthucheary SD, Lim CT, Parasakthi N, Tan A, Lam KL
    Singapore Med J, 1987 Oct;28(5):456-8.
    PMID: 3433116
    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  7. Manimaran M, Teo YY, Kah JCY, Beishenaliev A, Loke YL, Foo YY, et al.
    Int J Nanomedicine, 2024;19:3697-3714.
    PMID: 38681091 DOI: 10.2147/IJN.S452085
    INTRODUCTION: Over 75% of clinical microbiological infections are caused by bacterial biofilms that grow on wounds or implantable medical devices. This work describes the development of a new poly(diallyldimethylammonium chloride) (PDADMAC)/alginate-coated gold nanorod (GNR/Alg/PDADMAC) that effectively disintegrates the biofilms of Staphylococcus aureus (S. aureus), a prominent pathogen responsible for hospital-acquired infections.

    METHODS: GNR was synthesised via seed-mediated growth method, and the resulting nanoparticles were coated first with Alg and then PDADMAC. FTIR, zeta potential, transmission electron microscopy, and UV-Vis spectrophotometry analysis were performed to characterise the nanoparticles. The efficacy and speed of the non-coated GNR and GNR/Alg/PDADMAC in disintegrating S. aureus-preformed biofilms, as well as their in vitro biocompatibility (L929 murine fibroblast) were then studied.

    RESULTS: The synthesised GNR/Alg/PDADMAC (mean length: 55.71 ± 1.15 nm, mean width: 23.70 ± 1.13 nm, aspect ratio: 2.35) was biocompatible and potent in eradicating preformed biofilms of methicillin-resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) when compared to triclosan, an antiseptic used for disinfecting S. aureus colonisation on abiotic surfaces in the hospital. The minimum biofilm eradication concentrations of GNR/Alg/PDADMAC (MBEC50 for MRSA biofilm = 0.029 nM; MBEC50 for MSSA biofilm = 0.032 nM) were significantly lower than those of triclosan (MBEC50 for MRSA biofilm = 10,784 nM; MBEC50 for MRSA biofilm 5967 nM). Moreover, GNR/Alg/PDADMAC was effective in eradicating 50% of MRSA and MSSA biofilms within 17 min when used at a low concentration (0.15 nM), similar to triclosan at a much higher concentration (50 µM). Disintegration of MRSA and MSSA biofilms was confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy.

    CONCLUSION: These findings support the potential application of GNR/Alg/PDADMAC as an alternative agent to conventional antiseptics and antibiotics for the eradication of medically important MRSA and MSSA biofilms.

    Matched MeSH terms: Staphylococcal Infections/drug therapy
  8. Shobha KL, Rao PS, Thomas J
    Indian J Med Microbiol, 2005 Jul;23(3):186-8.
    PMID: 16100427
    The objective of this study was to find the prevalence of Staphylococcus spp. carriage among hospital personnel and hospital environment and their antibiogram with special emphasis on methicillin resistance. A total of 205 samples from hospital personnel and environment were collected from casualty, oncology and multidisciplinary cardiac unit ward of Kasturba Medical College Hospital, Manipal. Samples were collected using sterile cotton wool swabs and inoculated into brain heart infusion broth. Subcultures were done onto blood agar and MacConkey's agar. Isolates were identified by standard methods up to species level. Antimicrobial susceptibility test was performed according to standardized disc diffusion Kirby-Bauer method. Each of the isolates was screened for methicillin resistance using oxacillin disc on Mueller Hinton agar plate followed by MIC for methicillin and cefoxitin susceptibility test by disc diffusion method. Sixty five out of 205 strains (31.7%) were Staphylococcus spp. and all of them were coagulase negative. Most of the strains belonged to S.epidermidis 49.23% (32/65) followed by S. saprophyticus 26.15% (17/65). Maximum isolates of S.epidermidis were from anterior nares 28.12% (9/32 strains of S.epidermidis). Highest number of methicillin resistant coagulase negative strains (3/9, 33.33%) were isolated from stethoscope of multidisciplinary cardiac unit ward followed by carriers in the anterior nares (2/9, 22.22%). Methicillin resistant coagulase negative staphylococci are prevalent in anterior nares of hospital personnel and in the hospital environment thereby providing a definite source for hospital acquired infection. All isolates were sensitive to vancomycin, ciprofloxacin and amikacin.
    Matched MeSH terms: Staphylococcal Infections/drug therapy
  9. Hadi N, Nakhaeitazreji S, Kakian F, Hashemizadeh Z, Ebrahiminezhad A, Chong JWR, et al.
    Mol Biotechnol, 2024 Dec;66(12):3573-3582.
    PMID: 37957480 DOI: 10.1007/s12033-023-00957-y
    The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index 
    Matched MeSH terms: Staphylococcal Infections/drug therapy
  10. Khandanlou R, Ahmad MB, Shameli K, Saki E, Kalantari K
    Int J Mol Sci, 2014;15(10):18466-83.
    PMID: 25318051 DOI: 10.3390/ijms151018466
    Modified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/ PCL-NCs) have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA) as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The XRD results showed that as the intensity of the peaks decreased with the increase of ORS/Fe3O4-NCs content in comparison with PCL peaks, the Fe3O4-NPs peaks increased from 1.0 to 60.0 wt. %. The TEM and SEM results showed a good dispersion of ORS/Fe3O4-NCs in the PCL matrix and the spherical shape of the NPs. The TGA analysis indicated thermal stability of ORS/Fe3O4-NCs increased after incorporation with PCL but the thermal stability of ORS/Fe3O4/PCL-NCs decreased with the increase of ORS/Fe3O4-NCs content. Tensile strength was improved with the addition of 5.0 wt. % of ORS/Fe3O4-NCs. The antibacterial activities of the ORS/Fe3O4/PCL-NC films were examined against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using nutrient agar. The results indicated that ORS/Fe3O4/PCL-NC films possessed a strong antibacterial activity with the increase in the percentage of ORS/Fe3O4-NCs in the PCL.
    Matched MeSH terms: Staphylococcal Infections/drug therapy
  11. Zairul-Nizam ZF, Badaruddin BS
    J Orthop Surg (Hong Kong), 2006 Aug;14(2):216-8.
    PMID: 16914793
    Infection following total knee arthroplasty can be devastating. Even with established treatment protocols, eradication of the infection may not be feasible. We report 2 patients who required above-knee amputation to eradicate recalcitrant infection.
    Matched MeSH terms: Staphylococcal Infections/drug therapy
  12. Johari SA, Mohtar M, Syed Mohamad SA, Mohammat MF, Sahdan R, Mohamed A, et al.
    Biomed Res Int, 2017;2017:8032865.
    PMID: 28536702 DOI: 10.1155/2017/8032865
    Previously we have discovered a synthetically derived pyrrolidone alkaloid, MFM501, exhibiting good inhibitory activity against 53 MRSA and MSSA isolates with low cytotoxicity against three normal cell-lines with IC50 values at >625 µg/ml. Time-kill assay, scanning electron microscopy (SEM) analysis, in vivo oral acute toxicity test, and mice peritonitis model were carried out in this study. In the time-kill study, MFM501 showed a less than 3 log10 decrease in bacterial colony concentration value (CFU/ml) which represented a bacteriostatic action while displaying a time-dependent inhibitory mechanism. Following that, SEM analysis suggested that MFM501 may exert its inhibitory activity via cytoplasmic membrane disruption. Moreover, MFM501 showed no toxicity effect on treated mice at an estimated median acute lethal dose (LD50) value of more than 300 mg/kg and less than 2000 mg/kg. For the efficacy test, a mean effective dose (ED50) of 87.16 mg/kg was obtained via a single dose oral administration. Our data demonstrated that MFM501 has the potential to be developed further as a new, safe, and effective oral-delivered antibacterial agent against MRSA isolates.
    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  13. Zin NM, Al-Shaibani MM, Jalil J, Sukri A, Al-Maleki AR, Sidik NM
    Arch Microbiol, 2020 Oct;202(8):2083-2092.
    PMID: 32494868 DOI: 10.1007/s00203-020-01896-x
    Chloramphenicol (CAP) and cyclo-(L-Val-L-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(L-Val-L-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(L-Val-L-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(L-Val-L-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(L-Val-L-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.
    Matched MeSH terms: Staphylococcal Infections/drug therapy
  14. Yap JKY, Tan SYY, Tang SQ, Thien VK, Chan EWL
    Microb Drug Resist, 2021 Feb;27(2):234-240.
    PMID: 32589487 DOI: 10.1089/mdr.2020.0178
    Aims: Currently, limited antibiotics are available to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. One approach is the use of adjuvants in antibiotic therapy. 1,4-Naphthoquinones are naturally occurring alkaloids shown to have antibacterial properties. The objective of this study is to investigate the synergy between 1,4-naphthoquinone and selected β-lactam antibiotics and to evaluate the potential use of 1,4-naphthoquinone as an adjuvant in antibiotic treatment against MRSA infections. Methods: The antibacterial activity of 1,4-naphthoquinone and plumbagin was tested against nine pathogenic bacterial strains using the microdilution broth method. The interactions between 1,4-naphthoquinone and three antibiotics (cefuroxime, cefotaxime, and imipenem) were estimated by calculating the fractional inhibitory concentration of the combination. Results: The compounds 1,4-naphthoquinone and plumbagin exhibited a broad range of bacteriostatic and bactericidal effects against both Gram-positive and Gram-negative bacteria. The interaction between 1,4-naphthoquinone and imipenem, cefuroxime, and cefotaxime was synergistic against methicillin-sensitive Staphylococcus aureus and MRSA clinical strains. Against ATCC-cultured MRSA, a synergistic effect was observed between 1,4-naphthoquinone and cefotaxime. However, combination with imipenem only produced an additive effect, and an antagonistic action was observed between 1,4-naphthoquinone and cefuroxime. Conclusions: Although individually less potent than common antibiotics, 1,4-naphthoquinone acts synergistically with imipenem, cefuroxime, and cefotaxime against MRSA clinical strains and could potentially be used in adjuvant-antibiotic therapy against multidrug resistant bacteria.
    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  15. Lim KT, Teh CS, Yusof MY, Thong KL
    Trans R Soc Trop Med Hyg, 2014 Feb;108(2):112-8.
    PMID: 24336696 DOI: 10.1093/trstmh/trt111
    The prevalence of resistance to rifampicin and fusidic acid among Malaysian strains of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. This study aimed to determine the mechanisms of rifampicin and fusidic acid resistance and the genetic diversity of MRSA strains from a Malaysian tertiary hospital.
    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  16. Cheong JY, Makmor-Bakry M, Lau CL, Abdul Rahman R
    S. Afr. Med. J., 2012 Jul;102(7):616-9.
    PMID: 22748440
    The incidence of methicillin-resistant Staphylococcus aureus (MRSA) infections in intensive care units in Malaysia is significant. Invasive MRSA infections are commonly treated with vancomycin. In clinical practice, the serum vancomycin trough concentration is used as a surrogate marker of vancomycin efficacy. A low concentration of vancomycin may result in less effective therapy and increase the risk of bacterial resistance. We evaluated the relationship between the resolution of MRSA infections and trough concentrations of vancomycin.
    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  17. Chung PY, Chung LY, Navaratnam P
    PLoS One, 2013;8(2):e56687.
    PMID: 23437212 DOI: 10.1371/journal.pone.0056687
    Staphylococcus aureus is an important human pathogen in both hospital and the community that has demonstrated resistance to all currently available antibiotics over the last two decades. Multidrug-resistant isolates of methicillin-resistant S. aureus (MRSA) exhibiting decreased susceptibilities to glycopeptides has also emerged, representing a crucial challenge for antimicrobial therapy and infection control. The availability of complete whole-genome nucleotide sequence data of various strains of S. aureus presents an opportunity to explore novel compounds and their targets to address the challenges presented by antimicrobial drug resistance in this organism. Study compounds α-amyrin [3β-hydroxy-urs-12-en-3-ol (AM)], betulinic acid [3β-hydroxy-20(29)-lupaene-28-oic acid (BA)] and betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al (BE)] belong to pentacyclic triterpenoids and were reported to exhibit antimicrobial activities against bacteria and fungi, including S. aureus. The MIC values of these compounds against a reference strain of methicillin-resistant S. aureus (MRSA) (ATCC 43300) ranged from 64 µg/ml to 512 µg/ml. However, the response mechanisms of S. aureus to these compounds are still poorly understood. The transcription profile of reference strain of MRSA treated with sub-inhibitory concentrations of the three compounds was determined using Affymetrix GeneChips. The findings showed that these compounds regulate multiple desirable targets in cell division, two-component system, ABC transporters, fatty acid biosynthesis, peptidoglycan biosynthesis, aminoacyl-tRNA synthetase, ribosome and β-lactam resistance pathways which could be further explored in the development of therapeutic agents for the treatment of S. aureus infections.
    Matched MeSH terms: Staphylococcal Infections/drug therapy*
  18. Cheong I, Tan SC, Wong YH, Zainudin BM, Rahman MZ
    Med J Malaysia, 1994 Mar;49(1):24-8.
    PMID: 8057986
    Between August 1990 to November 1991, 905 of 2583 (35.4%) isolates of Staphylococcus aureus were found to be methicillin-resistant in a general hospital in Malaysia. A detailed study of 539 of these isolates showed a high prevalence of methicillin resistant Staphylococcus aureus (MRSA) in the surgical/orthopaedic wards, paediatric wards and the special care unit. The yield of MRSA was highest from wounds/ulcers/skin swabs accounting for 64.2 per cent followed by 6.9 per cent in blood cultures. Vancomycin remains the drug of choice with no resistance detected. The resistance to ciprofloxacin was 6.7 per cent, rifampicin 4.5 per cent and fusidic acid 2.0 per cent. Most isolates were resistant to aminoglycosides. In view of the high prevalence of MRSA in this hospital, the authorities must introduce more effective measures to control its spread as a nosocomial pathogen. Otherwise it may seriously disrupt the efficient delivery of health care services in the country.
    Matched MeSH terms: Staphylococcal Infections/drug therapy
  19. Lee SH, Yii NW, Hanifah YA
    J R Coll Surg Edinb, 1991 Oct;36(5):323-7.
    PMID: 1757914
    Methicillin-resistant Staphylococcus aureus has emerged as an important cause of nosocomial infections in recent years. During 1988 in the Department of Surgery of the University Hospital in Kuala Lumpur, Malaysia, 148 patients were shown to be infected or colonized with these organisms. The patients at risk were those who stay in hospital for greater than 14 days, those over 50 years of age, patients who underwent neurosurgery, cardiothoracic surgery, or were admitted with major burns. Of the 148 patients, 78 (52.7%) were clinically infected, the remaining 70 being colonized. A total of 28 patients died (18.9%) but only five (3.4%) as a direct result of this infection. The estimated annual cost of controlling the organism was found to be approximately MR$250,000. (50,000 pounds). This nosocomial infection therefore represents a serious problem, especially in developing countries where health funding and health facilities are limited.
    Matched MeSH terms: Staphylococcal Infections/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links