Displaying publications 1 - 20 of 93 in total

Abstract:
Sort:
  1. Shameli K, Ahmad MB, Yunus WM, Rustaiyan A, Ibrahim NA, Zargar M, et al.
    Int J Nanomedicine, 2010 Oct 22;5:875-87.
    PMID: 21116328 DOI: 10.2147/IJN.S13632
    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO(3) were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller-Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  2. Cheong JY, Makmor-Bakry M, Lau CL, Abdul Rahman R
    S. Afr. Med. J., 2012 Jul;102(7):616-9.
    PMID: 22748440
    The incidence of methicillin-resistant Staphylococcus aureus (MRSA) infections in intensive care units in Malaysia is significant. Invasive MRSA infections are commonly treated with vancomycin. In clinical practice, the serum vancomycin trough concentration is used as a surrogate marker of vancomycin efficacy. A low concentration of vancomycin may result in less effective therapy and increase the risk of bacterial resistance. We evaluated the relationship between the resolution of MRSA infections and trough concentrations of vancomycin.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  3. Karunakaran R, Halim HA, Ng KP, Hanifah YA, Chin E, Jaafar FL, et al.
    Eur Rev Med Pharmacol Sci, 2011 Nov;15(11):1343-6.
    PMID: 22195371
    Tsukamurella spp. are a rare but important cause of intravascular catheter-related bacteremia in immunocompromised patients. The organism is an aerobic, Gram-positive, weakly acid-fast bacillus that is difficult to differentiate using standard laboratory methods from other aerobic actinomycetales such as Nocardia spp., Rhododoccus spp., Gordonia spp., and the rapid growing Mycobacterium spp. We report a case of Tsukamurella tyrosinosolvens catheter-related bacteremia in a 51-year-old haematology patient who responded to treatment with imipenem and subsequent line removal. 16srRNA sequencing allowed for the prompt identification of this organism.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  4. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5164-5180.
    PMID: 28361404 DOI: 10.1007/s11356-017-8855-2
    Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 μg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K+, and extracellular adenosine 5'-triphosphate (ATP) with 110.5 μg/mL, 2.34 μg/mL, and 87.24 ng/μL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC50 value of 0.998 ± 0.058 and 0.387 ± 0.002 μg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  5. Teh SS, Ee GC, Mah SH, Yong YK, Lim YM, Rahmani M, et al.
    Biomed Res Int, 2013;2013:517072.
    PMID: 24089682 DOI: 10.1155/2013/517072
    The in vitro cytotoxicity tests on the extracts of Mesua beccariana, M. ferrea, and M. congestiflora against Raji, SNU-1, HeLa, LS-174T, NCI-H23, SK-MEL-28, Hep-G2, IMR-32, and K562 were achieved using MTT assay. The methanol extracts of Mesua beccariana showed its potency towards the proliferation of B-lymphoma cell (Raji). In addition, only the nonpolar to semipolar extracts (hexane to ethyl acetate) of the three Mesua species indicated cytotoxic effects on the tested panel of human cancer cell lines. Antioxidant assays were evaluated using DPPH scavenging radical assay and Folin-Ciocalteu method. The methanol extracts of M. beccariana and M. ferrea showed high antioxidant activities with low EC₅₀ values of 12.70 and 9.77  μg/mL, respectively, which are comparable to that of ascorbic acid (EC₅₀ = 5.62  μg/mL). Antibacterial tests were carried out using four Gram positive and four Gram negative bacteria on Mesua beccariana extracts. All the extracts showed negative results in the inhibition of Gram negative bacteria. Nevertheless, methanol extracts showed some activities against Gram positive bacteria which are Bacillus cereus, methicillin-sensitive Staphylococcus aureus (MSSA), and methicillin-resistant Staphylococcus aureus (MRSA), while the hexane extract also contributed some activities towards Bacillus cereus.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  6. Teow SY, Ali SA
    Pak J Pharm Sci, 2016 Nov;29(6):2119-2124.
    PMID: 28375134
    Peptides derived from HIV-1 transmembrane proteins have been extensively studied for antimicrobial activities, and they are known as antimicrobial peptides (AMPs). These AMPs have also been reported to potently combat the drug-resistant microbes. In this study, we demonstrated that peptide #6383 originated from HIV-1 MN strain membrane-spanning domain of gp41 was active (2-log reductions) at 100βg/mL (56.5βM) against methicillin-resistant Staphylococcus aureus (MRSA) in 10% and 50% human plasma-supplemented phosphate buffered saline (PBS). The activity was further enhanced (3-log reductions) in the presence of 5% human serum albumin (HSA) alone. All bactericidal activities were achieved within 6 hours. At 100μg/mL, the peptide showed only 13% toxicity against human erythrocytes. This peptide can serve as an attractive template for a design of a novel peptide antibiotic against drug-resistant bacteria. By sequence-specific engineering or modifications, we anticipated that the bactericidal activity and the reduced toxicity against human erythrocytes will be improved.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  7. Ghaznavi-Rad E, Neela V, Nor Shamsudin M, Ghasemzadeh Moghaddam H, Tavakol M, van Belkum A, et al.
    Eur J Clin Microbiol Infect Dis, 2012 Dec;31(12):3317-21.
    PMID: 23010901 DOI: 10.1007/s10096-012-1698-3
    Methicillin-resistant Staphylococcus aureus (MRSA) is well known for its epidemicity, with the emergence of new clones on a daily basis. Diversity in the clonal types of MRSA challenges the success of treatment, as different clones respond to different sets of antibiotics. However, the antibiotic susceptibility among the isolates within the same clones is largely unexplored. In a previous study on MRSA epidemiology in Malaysia, we identified six major clonal complexes (ST-239-CC8, ST-1-CC1, ST-188-CC1, ST-22-CC22, ST-7-CC7 and ST-1283-CC8). In the present study, we investigated the antibiotic susceptibility patterns of isolates of different clones. Three hundred and eighty-nine MRSA isolates were subjected to the disc diffusion test, oxacillin minimum inhibitory concentration (MIC) determination and assessment of the distribution of macrolide, lincosamide and streptogramin B (MLS(B)) resistance genes. Thirty-six different antibiotic profiles were observed: 30 (83.3 %) among ST-239, 2 (5.6 %) among ST-1283 and 1 (2.8 %) each for ST-1, ST-7, ST-22 and ST-188. All ST-239 (362, 9 %) isolates were multiple drug-resistant (MDR; resistant to more than three classes of antibiotics) and had oxacillin MICs >256 mg/l. Among the 385 clindamycin-resistant isolates, 375 (96.4 %) illustrated inducible resistance (D-zone-positive), while 10 (2.6 %) showed constitutive resistance. The vast majority of the macrolide-resistant isolates carried the ermA gene (95.1 %), followed by ermC (12.9 %). Diversity in the antibiotic susceptibilities of isolates within the clones emphasises the need for continuous surveillance of MDR strains to prescribe the correct antibiotic rather than empirical treatment. This will likely reduce the emergence of new endemic or epidemic resistant MRSA clones.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  8. Atshan SS, Nor Shamsudin M, Lung LT, Sekawi Z, Pei Pei C, Karunanidhi A, et al.
    Biomed Res Int, 2013;2013:515712.
    PMID: 24455699 DOI: 10.1155/2013/515712
    This study evaluated whether genotypically different clinical isolates of S. aureus have similar susceptibilities to individual antibiotics. It further aims to check the impact of biofilm on the in vitro activity of vancomycin, daptomycin, linezolid, and tigecycline against S. aureus clones. The study used a total of 60 different clinical MSSA and MRSA isolates. Susceptibilities were performed in planktonic cultures by macrobroth dilution and epsilon-test (E test) system. Biofilm production was determined using an adherent plate assay. The efficacy of antimicrobial activities against biofilms formation was checked using confocal laser scanning microscopy (CLSM). The study found that similar and different spa, MLST, and SCCmec types displayed high variation in their susceptibilities to antibiotics with tigecycline and daptomycin being the most effective. The biofilms were found resistant to high concentrations of most antibiotics tested with daptomycin being the most effective drug used in adhesive biofilms. A considerable difference exists among similar and various clone types against antibiotics tested. This variation could have contributed to the degree of virulence even within the same clonal genotype and enhanced heterogeneity in the infection potential. Thus, the development of a rapid and precise identification profile for each clone in human infections is important.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  9. Mohtar M, Johari SA, Li AR, Isa MM, Mustafa S, Ali AM, et al.
    Curr Microbiol, 2009 Aug;59(2):181-6.
    PMID: 19475447 DOI: 10.1007/s00284-009-9416-9
    Increased prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and their distribution in both hospital and community settings. Discovery and development of new anti-MRSA agents as alternatives to the very few antibiotics left in the armamentarium are, thus, urgently required. Recently, an efflux mechanism in MRSA has been identified as one of the main contributors of resistance towards various structurally unrelated antibiotics. The potential of reserpine (a phytoalkaloid) as efflux pump inhibitor (EPI) against various microbes remains limited as the concentration needed for inhibition is toxic to humans. This study therefore aimed to evaluate 13 alkaloid compounds as potential inhibitory agents and/or potential EPIs against a panel of three MRSA isolates which not only differ in their susceptibility to vancomycin (amongst the last drugs available to treat serious MRSA infection), but also exhibited active efflux activity. Results indicated berberine's moderate inhibitiory activity against two MRSA isolates scoring a minimum inhibitory concentration (MIC) value of 125 microg/ml. Notable efflux inhibitory activity (ranging from two- to eightfold Ethidium Bromide MIC reduction) meanwhile was detected from quinine, piperine and harmaline using reserpine as the positive control. Findings from this study support the opinion that a vast number of potential phytocompounds with pharmacological potential await discovery. Therapeutic application of these compounds, however, warrants further investigation to ascertain their pharmacodynamics and safety aspects.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  10. Tiwari S, Sahu M, Rautaraya B, Karuna T, Mishra SR, Bhattacharya S
    J Indian Med Assoc, 2011 Nov;109(11):800-1.
    PMID: 22666934
    Methicillin-resistant Staphylococcus aureus (MRSA) emerged as a nosocomial pathogen in early 1960s, causing Increasing number of outbreaks in 19708, first reported in a teaching hospital in Malaysia in 1972, causing increased mortality, morbidity, and healthcare costs. Aim of this study is to screen out MRSA from various clinical samples and to see their antibiotic susceptibility pattern. From May 2008 to May 2009, 204 S aureus strains were isolated, out of which 114 (55.8%) were MRSA, and rest methicillin-sensitive Staphylococcus aureus (MSSA). Most of the MRSA strains were obtained from pus (45%) followed by urine (20.5%). Frequency of isolating MRSA were maximum in catheter tip (80%) followed by blood (66.7%) and pus (58.7%). MRSA strains were showing 100% sensitivity to vancomycin and Iinezolid, whereas 92.9% to teicoplanin. Therefore it is concluded that antibiotics other than vancomycin can be used as anti-MRSA agents after sensitivity test, as well as irrational and indiscriminate use of antibiotics can be avoided.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  11. Rees KA, Bermudez C, Edwards DJ, Elliott AG, Ripen JE, Seta C, et al.
    J Nat Prod, 2015 Aug 28;78(8):2141-4.
    PMID: 26284978 DOI: 10.1021/acs.jnatprod.5b00410
    In an ongoing program to identify new anti-infective leads, an extract derived from whole plant material of Desmodium congestum collected in the Sarawak rainforest was found to have anti-MRSA activity. Bioassay-guided isolation led to the isolation of two new prenylated chalcones, 5'-O-methyl-3-hydroxyflemingin A (1) and 5'-O-methylflemingin C (2), which were closely related to the flemingins previously isolated from various Flemingia species. Chalcones 1 and 2, which were determined to be 4:6 enantiomeric mixtures by chiral HPLC, exhibited moderate activity against a panel of Gram-positive bacteria and were also cytotoxic to the HEK293 human embryonic kidney cell line.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  12. Yap JKY, Tan SYY, Tang SQ, Thien VK, Chan EWL
    Microb Drug Resist, 2021 Feb;27(2):234-240.
    PMID: 32589487 DOI: 10.1089/mdr.2020.0178
    Aims: Currently, limited antibiotics are available to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. One approach is the use of adjuvants in antibiotic therapy. 1,4-Naphthoquinones are naturally occurring alkaloids shown to have antibacterial properties. The objective of this study is to investigate the synergy between 1,4-naphthoquinone and selected β-lactam antibiotics and to evaluate the potential use of 1,4-naphthoquinone as an adjuvant in antibiotic treatment against MRSA infections. Methods: The antibacterial activity of 1,4-naphthoquinone and plumbagin was tested against nine pathogenic bacterial strains using the microdilution broth method. The interactions between 1,4-naphthoquinone and three antibiotics (cefuroxime, cefotaxime, and imipenem) were estimated by calculating the fractional inhibitory concentration of the combination. Results: The compounds 1,4-naphthoquinone and plumbagin exhibited a broad range of bacteriostatic and bactericidal effects against both Gram-positive and Gram-negative bacteria. The interaction between 1,4-naphthoquinone and imipenem, cefuroxime, and cefotaxime was synergistic against methicillin-sensitive Staphylococcus aureus and MRSA clinical strains. Against ATCC-cultured MRSA, a synergistic effect was observed between 1,4-naphthoquinone and cefotaxime. However, combination with imipenem only produced an additive effect, and an antagonistic action was observed between 1,4-naphthoquinone and cefuroxime. Conclusions: Although individually less potent than common antibiotics, 1,4-naphthoquinone acts synergistically with imipenem, cefuroxime, and cefotaxime against MRSA clinical strains and could potentially be used in adjuvant-antibiotic therapy against multidrug resistant bacteria.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  13. Aklilu E, Zunita Z, Hassan L, Cheng CH
    Vet Microbiol, 2013 Jun 28;164(3-4):352-8.
    PMID: 23523336 DOI: 10.1016/j.vetmic.2013.02.030
    In this study, we report the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) among veterinary students and personnel in Malaysia. Nasal and oral swabs were collected from 103 veterinary medicine students and 28 personnel from a veterinary hospital. Antibiotic sensitivity test (AST), minimum inhibitory concentration (MIC) test, and PCR amplifications of nucA and mecA gene were performed. Molecular characterization of the isolates was conducted using multilocus sequence typing (MLST), staphylococcal protein A gene (spa) typing, and pulsed-field gel electrophoresis (PFGE). Results from MLST show the presence of the pandemic and widespread MRSA clones, ST5 and ST59. Spa gene typing revealed spa type t267 which has a wide geographical distribution. A new spa type, t5697 was found in this study. Fingerprint analysis by using PFGE show heterogeneity of the isolates. These findings affirm the importance of MRSA in veterinary settings and underscore the need for further extensive research to devise contextual control and prevention strategies.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  14. Che Hamzah AM, Yeo CC, Puah SM, Chua KH, A Rahman NI, Abdullah FH, et al.
    J Med Microbiol, 2019 Sep;68(9):1299-1305.
    PMID: 31140965 DOI: 10.1099/jmm.0.000993
    The spread of multidrug-resistant Staphylococcus aureus is a public health concern. The inducible macrolide-lincosamide-streptogrammin B (iMLSB ) phenotype (or inducible clindamycin resistance) is associated with false clindamycin susceptibility in routine laboratory testing and may lead to treatment failure. Tigecycline resistance remains rare in S. aureus worldwide. This study aims to determine the antimicrobial susceptibility profiles of clinical isolates of S. aureus obtained from the main tertiary hospital in Terengganu state, Malaysia, from July 2016 to June 2017. The antimicrobial susceptibilities of 90 methicillin-resistant S. aureus (MRSA) and 109 methicillin-susceptible S. aureus (MSSA) isolates were determined by disc diffusion with the iMLSB phenotype determined by D-test. Multidrug resistance (MDR) and the iMLSB phenotype were more prevalent in MRSA (84.4 and 46.7  %, respectively) compared to MSSA isolates. All five tigecycline-resistant isolates were MRSA. The high incidence of MDR and the iMLSB phenotype and the emergence of tigecycline resistance in the Terengganu S. aureus isolates warrants continuous vigilance.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  15. Abdullah S, Oh YS, Kwak MK, Chong K
    J Microbiol, 2021 Feb;59(2):164-174.
    PMID: 33355891 DOI: 10.1007/s12275-021-0551-8
    There have been relatively few studies which support a link between Ganoderma boninense, a phytopathogenic fungus that is particularly cytotoxic and pathogenic to plant tissues and roots, and antimicrobial compounds. We previously observed that liquid-liquid extraction (LLE) using chloroformmethanol-water at a ratio (1:1:1) was superior at detecting antibacterial activities and significant quantities of antibacterial compounds. Herein, we demonstrate that antibacterial secondary metabolites are produced from G. boninense mycelia. Antibacterial compounds were monitored in concurrent biochemical and biophysical experiments. The combined methods included high performance thin-layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopy. The antibacterial compounds derived from mycelia with chloroform-methanol extraction through LLE were isolated via a gradient solvent elution system using HPTLC. The antibacterial activity of the isolated compounds was observed to be the most potent against Staphylococcus aureus ATCC 25923 and multidrug-resistant S. aureus NCTC 11939. GC-MS, HPLC, and FTIR analysis confirmed two antibacterial compounds, which were identified as 4,4,14α-trimethylcholestane (m/z = 414.75; lanostane, C30H54) and ergosta-5,7,22-trien-3β-ol (m/z = 396.65; ergosterol, C28H44O). With the aid of spectroscopic evaluations, ganoboninketal (m/z = 498.66, C30H42O6), which belongs to the 3,4-seco-27-norlanostane triterpene family, was additionally characterized by 2D-NMR analysis. Despite the lack of antibacterial potential exhibited by lanostane; both ergosterol and ganoboninketal displayed significant antibacterial activities against bacterial pathogens. Results provide evidence for the existence of bioactive compounds in the mycelia of the relatively unexplored phytopathogenic G. boninense, together with a robust method for estimating the corresponding potent antibacterial secondary metabolites.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  16. Hazni H, Ahmad N, Hitotsuyanagi Y, Takeya K, Choo CY
    Planta Med, 2008 Dec;74(15):1802-5.
    PMID: 18991205 DOI: 10.1055/s-0028-1088340
    The methanolic extract of the leaves of CASSIA ALATA was sequentially partitioned in increasing polarity to afford the hexane, chloroform, butanol and residual extract. Crude extracts were evaluated against MRSA using the agar well diffusion assay. The butanol and chloroform extracts both exhibited inhibition against MRSA with inhibition indexes of 1.03 +/- 0.16 and 0.78 +/- 0.07 at the concentration of 50 mg/mL. The butanol extracts were further purified using silica gel and reverse phase chromatography to afford kaempferol ( 1), kaempferol 3- O-beta-glucopyranoside ( 2), kaempferol 3- O-gentiobioside ( 3) and aloe emodin ( 4). The four constituents showed varying degrees of inhibition against MRSA. Both 1 and 4 exhibited MIC (50) values of 13.0 +/- 1.5 microg/mL and 12.0 +/- 1.5 microg/mL, respectively. The kaempferol glycosides 2 and 3 were less active with MIC (50) values of 83.0 +/- 0.9 microg/mL and 560.0 +/- 1.2 microg/mL, respectively. A free hydroxyl group at C-3 of the flavonol structure is a structural requirement for the inhibition of MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  17. Samsudin N, Chua WC, Hasan H, Hassan SA, Deris ZZ
    Malays J Pathol, 2024 Apr;46(1):95-102.
    PMID: 38682849
    Borderline oxacillin-resistant Staphylococcus aureus (BORSA) are mecA-negative strains with oxacillin minimum inhibitor concentration (MIC) close to the resistance breakpoint of ≥ 4μg/mL. Instead of producing penicillin-binding protein with low affinity to methicillin (oxacillin) mediated by mecA gene as in methicillin-resistant S. aureus (MRSA), BORSA strains are characterised by the hyperproduction of β-lactamase enzymes, thus able to break down methicillin. Common laboratory methods to detect MRSA such as cefoxitin disk diffusion alone may fail to detect methicillin resistance due to BORSA. We report five cases of BORSA blood-stream infections in a university teaching hospital. All isolates were found to be susceptible to cefoxitin using disk diffusion, resistant to oxacillin using automated MIC method, and did not harbour mecA gene. All patients were suscessfully treated with anti-MRSA antibiotics, and removal of primary sources were done if identified. A more cost-effective method for screening and diagnosis of BORSA is needed in addition to cefoxitin disk diffusion test, in order to monitor the spread, and to enable routine detection and treatment of this pathogen.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  18. Alshaibani M, Zin NM, Jalil J, Sidik N, Ahmad SJ, Kamal N, et al.
    J Microbiol Biotechnol, 2017 07 28;27(7):1249-1256.
    PMID: 28535606 DOI: 10.4014/jmb.1608.08032
    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo-(L-Val-L-Pro), cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Phe), and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  19. Al-Shaibani MM, Radin Mohamed RMS, Zin NM, Al-Gheethi A, Al-Sahari M, El Enshasy HA
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923072 DOI: 10.3390/molecules26092510
    The present research aimed to enhance the pharmaceutically active compounds' (PhACs') productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*
  20. Zajmi A, Mohd Hashim N, Noordin MI, Khalifa SA, Ramli F, Mohd Ali H, et al.
    PLoS One, 2015;10(6):e0128157.
    PMID: 26030925 DOI: 10.1371/journal.pone.0128157
    Staphylococci are facultative anaerobes, perfectly spherical un-encapsulated cocci, with a diameter not exceeding 1 micrometer in diameter. Staphylococcus aureus are generally harmless and remain confined to the skin unless they burrow deep into the body, causing life-threatening infections in bones, joints, bloodstream, heart valves and lungs. Among the 20 medically important staphylococci species, Staphylococcus aureus is one of the emerging human pathogens. Streptomycin had its highest potency against Staphylococcus infections despite the likelihood of getting a resistant type of staphylococcus strains. Methicillin-resistant S. aureus (MRSA) is the persister type of Staphylococcus aureus and was evolved after decades of antibiotic misuse. Inadequate penetration of the antibiotic is one of the principal factors related to success/failure of the therapy. The active drug needs to reach the bacteria at concentrations necessary to kill or suppress the pathogen's growth. In turn the effectiveness of the treatment relied on the physical properties of Staphylococcus aureus. Thus understanding the cell integrity, shape and roughness is crucial to the overall influence of the therapeutic agent on S. aureus of different origins. Hence our experiments were designed to clarify ultrastructural changes of S. aureus treated with streptomycin (synthetic compound) in comparison to artonin E (natural compound). In addition to the standard in vitro microbial techniques, we used transmission electron microscopy to study the disrupted cell architecture under antibacterial regimen and we correlate this with scanning electron microscopy (SEM) to compare results of both techniques.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links