Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Kusrini E, Hashim F, Azmi WN, Amin NM, Estuningtyas A
    PMID: 26474244 DOI: 10.1016/j.saa.2015.09.021
    The terbium trinitrate.trihydrate.18-crown ether-6, Tb(NO3)3(OH2)3.(18C6) complex has been characterized by elemental analysis, photoluminescence and single X-ray diffraction. The IC50 values were determined based on MTT assay while light and fluorescence microscopy imaging were employed to evaluate the cellular morphological changes. Alkaline comet assay was performed to analyze the DNA damage. The photoluminescence spectrum of the Tb complex excited at 325 nm displayed seven luminescence peaks corresponding to the (5)D4→(7)F(0, 1, 2, 3, 4, 5, 6) transitions. The cytotoxicity and genotoxicity studies indicated that the Tb(NO3)3(OH2)3.(18C6) complex and its salt form as well as the 18C6 molecule have excellent anti-amoebic activity with very low IC50 values are 7, 2.6 and 1.2 μg/mL, respectively, with significant decrease (p<0.05) in Acanthamoeba viability when the concentration was increased from 0 to 30 μg/mL. The mode of cell death in Acanthamoeba cells following treatment with the Tb complex was apoptosis. This is in contrast to the Tb(NO3)3.6H2O salt- and 18C6 molecule-treated Acanthamoeba, which exhibited necrotic type cells. The percentage of DNA damage following treatment with all the compounds at the IC25 values showed high percentage of type 1 with the % nuclei damage are 14.15±2.4; 46.00±4.2; 36.36±2.4; 45.16±0.6%, respectively for untreated, treated with Tb complex, Tb salt and 18C6 molecule. The work features promising potential of Tb(NO3)3(OH2)3.(18C6) complex as anti-amoebic agent, representing a therapeutic option for Acanthamoeba keratitis infection.
    Matched MeSH terms: Microscopy, Fluorescence
  2. Yip WK, Seow HF
    Cancer Lett, 2012 May 28;318(2):162-72.
    PMID: 22182447 DOI: 10.1016/j.canlet.2011.12.018
    Dysregulation of E-cadherin and β-catenin function in cell-cell adhesion is common in nasopharyngeal carcinoma (NPC) and correlates with metastatic disease. In this study, we examined the role of EGF-activated phosphatidylinositol 3-kinase (PI3K)-Akt signaling in E-cadherin and β-catenin regulation. We found that reduced membranous E-cadherin and β-catenin expression was positively correlated with Akt phosphorylation in NPC tissues. EGF treatment disrupted cell-cell adhesion and resulted in mesenchymal morphological features in NPC cell lines (TW01, TW04, and TW06). Western blot analysis showed that the E-cadherin protein level was partially reduced in TW04 cells only and the β-catenin levels were not considerably affected upon EGF treatment. In contrast, quantitative real-time RT-PCR showed that the E-cadherin, but not β-catenin, mRNA levels were markedly reduced by EGF in all cell lines. Immunofluorescent staining revealed that E-cadherin and β-catenin appeared to be markedly reduced on the cell surface and more localized in the cytoplasm. Inhibition of PI3K by LY294002 did not abolish the EGF-induced downregulation of E-cadherin protein or mRNA in TW04 cells but moderately increased the β-catenin protein level in TW01 cells and mRNA level in TW06 cells. However, LY294002 substantially restored or increased cell surface E-cadherin and β-catenin in all EGF-treated cell lines, in concordance with the inhibition of cell morphological changes. Moreover, LY294002 significantly blocked EGF-driven cell invasion, correlating with the elevation of membranous E-cadherin and β-catenin levels. In conclusion, EGF-induced epithelial-to-mesenchymal transition may not be only dependent on downregulation of E-cadherin protein/mRNA but also on mislocalization of E-cadherin and β-catenin. The mechanisms involved may be related, at least in part, to the PI3K-Akt pathway.
    Matched MeSH terms: Microscopy, Fluorescence
  3. Lim KB
    Ann Acad Med Singap, 1988 Oct;17(4):545-7.
    PMID: 3223741
    Forty-five Asian patients (Indians 35, Chinese 8, Malay 2) with histologically proven lichen planus were studied by immunofluorescence. The most characteristic feature, seen in 93% of the cases, was shaggy deposition of fibrinogen along the basement membrane. Immunoglobulin deposition along the basement membrane was notably, absent. Colloid bodies were observed in 87% of the cases. Fibrinogen was the most common immunoreactant, and its presence in colloid bodies was always associated with fibrinogen deposition along the basement membrane zone. Colloid bodies also contained a variety of other immunoreactants. However, staining for IgM was noted to be the most intense. The combination of shaggy deposition of fibrinogen along the basement membrane, in the absence of immunoglobulins, and the presence of colloid bodies around the basement membrane zone, is highly characteristic of lichen planus. The pattern of immunofluorescence among Asians with lichen planus, conforms to that observed in other races. There did not appear to be any difference in the immunofluorescence staining with pattern in the three racial groups studied.
    Matched MeSH terms: Microscopy, Fluorescence
  4. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
    Matched MeSH terms: Microscopy, Fluorescence
  5. Nakisah MA, Ida Muryany MY, Fatimah H, Nor Fadilah R, Zalilawati MR, Khamsah S, et al.
    World J Microbiol Biotechnol, 2012 Mar;28(3):1237-44.
    PMID: 22805843 DOI: 10.1007/s11274-011-0927-8
    Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC(50) values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell's blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge's extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.
    Matched MeSH terms: Microscopy, Fluorescence
  6. Dhurga DB, Suresh KG, Tan TC, Chandramathi S
    Trans R Soc Trop Med Hyg, 2012 Dec;106(12):725-30.
    PMID: 23141370 DOI: 10.1016/j.trstmh.2012.08.005
    Previous studies have shown that apoptosis-like features are observed in Blastocystis spp., an intestinal protozoan parasite, when exposed to the cytotoxic drug metronidazole (MTZ). This study reports that among the four subtypes of Blastocystis spp. investigated for rate of apoptosis when treated with MTZ, subtype 3 showed the highest significant increase after 72h of in vitro culture when treated with MTZ at 0.1mg/ml (79%; p<0.01) and 0.0001mg/ml (89%; p<0.001). The close correlation between viable cells and apoptotic cells for both dosages implies that the pathogenic potential of these isolates has been enhanced when treated with MTZ. This suggests that there is a mechanism in Blastocystis spp. that actually regulates the apoptotic process to produce higher number of viable cells when treated. Apoptosis may not just be programmed cell death but instead a mechanism to increase the number of viable cells to ensure survival during stressed conditions. The findings of the present study have an important contribution to influence chemotherapeutic approaches when developing drugs against the emerging Blastocystis spp. infections.
    Matched MeSH terms: Microscopy, Fluorescence
  7. Loh JY, Kay GL, Ting ASY
    Mar Biotechnol (NY), 2018 Jun;20(3):353-362.
    PMID: 29654379 DOI: 10.1007/s10126-018-9813-9
    Predominance of beneficial bacteria helps to establish a healthy microbiota in fish gastrointestinal system and thus to reduce emerging pathogen. In this study, the colonization efficacy of Lactococcus lactis subsp. lactis CF4MRS in Artemia franciscana and its potential as a probiotic in suppressing Edwardsiella sp. infection were investigated in vivo. The colonization extent of the bioencapsulated L. lactis was established through visualization of gfp gene-transformed L. lactis in A. franciscana. Here, we demonstrate that when A. franciscana is administrated with L. lactis at 108 CFU mL-1 for 8 h, the highest relative percentage of survival (RPS = 50.0) is observed after inoculation with Edwardsiella sp. The total counts of L. lactis entrapped in Artemia were the highest (ranged from 3.2 to 5.1 × 108 CFU mL-1), when 108-109 CFU mL-1 of L. lactis was used as starting inoculum, with the bioencapsulation performed within 8-24 h. Fluorescent microscopy showed gfp-transformed L. lactis colonized the external trunk surfaces, mid-gut and locomotion antennules of the A. franciscana nauplii. These illustrations elucidate the efficiency of colonization of L. lactis in the gastrointestinal tract and on the body surfaces of Artemia. In conclusion, L. lactis subsp. lactis CF4MRS shows a good efficacy of colonization in Artemia and has the potential for biocontrol/probiotic activity against Edwardsiella sp. infection.
    Matched MeSH terms: Microscopy, Fluorescence
  8. Mat Isa N, Abdul Mutalib NE, Alitheen NB, Song AA, Rahim RA
    J. Mol. Microbiol. Biotechnol., 2017;27(4):246-251.
    PMID: 29055951 DOI: 10.1159/000481257
    This study demonstrates that cell wall treatment of Lactococcus lactis harbouring the internal ribosome entry site-incorporated lactococcal bicistronic vector pNZ:VIG mediated the delivery of genes into an eukaryotic cell line, DF1 cells, through bactofection. Bactofection analysis showed that the pNZ:VIG plasmid in L. lactis can be transferred into DF1 cells and that both the VP2 and gfp genes cloned in the plasmid can be transcribed and translated. The protein band relative to the Mr of VP2 protein (49 kDa) was successfully detected via Western blot analysis, while green fluorescence was successfully detected using a fluorescence microscope. The intensity of the bands detected increased for samples treated with both 1.5% (w/v) glycine and 10 μg/mL of lysozyme when compared to L. lactis treated with glycine alone and without treatment. Cell wall treatment of L. lactis with a combination of both glycine and lysozyme was not only shown to mediate plasmid transfer to DF1 cells, but also to increase the plasmid transfer efficiency.
    Matched MeSH terms: Microscopy, Fluorescence
  9. Khurana RK, Kumar R, Gaspar BL, Welsby G, Welsby P, Kesharwani P, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:645-658.
    PMID: 30033299 DOI: 10.1016/j.msec.2018.05.010
    The current studies envisage unravelling the underlying cellular internalisation mechanism of the systematically developed docetaxel (DTH) polyunsaturated fatty acid (PUFA) enriched self-nanoemulsifying lipidic micellar systems (SNELS). The concentration-, time- and cytotoxicity-related effects of DTH-SNELS on triple negative breast cancer (TNBC) MDA-MB-231 and non-TNBC MCF-7 cell lines were assessed through Presto-blue assay. Subsequently, rhodamine-123 (Rh-123) loaded SNELS were employed for evaluating their internalisation through flow cytometry and fluorescence microscopy, establishing it to be "clathrin-mediated" endocytic pathway. Apoptosis assay (65% cell death) and cell cycle distribution (47% inhibition at G2/M phase) further corroborated the cytotoxicity of DTH-SNELS towards cancerous cells. Biodistribution, histopathology and haematology studies indicated insignificant toxicity of the optimized formulation on vital organs. Preclinical anticancer efficacy studies using 7,12-dimethylbenzantracene (DMBA)-induced model construed significant reduction in breast tumor-volume. Overall, extensive in vitro and in vivo studies indicated the intracellular localization and cytotoxicity, suggesting DTH-SNELS as promising delivery systems for breast tumor therapeutics including TNBC.
    Matched MeSH terms: Microscopy, Fluorescence
  10. Ogoh K, Akiyoshi R, Suzuki H
    Biochem Biophys Rep, 2020 Sep;23:100771.
    PMID: 32490216 DOI: 10.1016/j.bbrep.2020.100771
    Bioluminescence microscopy is an area attracting considerable interest in the field of cell biology because it offers several advantages over fluorescence microscopy, including no requirement for excitation light and being phototoxicity free. This method requires brighter luciferase for imaging; however, suitable genetic resource material for this purpose is not available at present. To achieve brighter bioluminescence microscopy, we developed a new firefly luciferase. Using the brighter luciferase, a reporter strain of Drosophila Gal4-UAS (Upstream Activating Sequence) system was constructed. This system demonstrated the expression pattern of engrailed, which is a segment polarity gene, during Drosophila metamorphosis by bioluminescence microscopy, and revealed drastic spatiotemporal change in the engrailed expression pattern during head eversion in the early stage of pupation.
    Matched MeSH terms: Microscopy, Fluorescence
  11. Kodaira S, Konishi T, Kobayashi A, Maeda T, Ahmad TA, Yang G, et al.
    J Radiat Res, 2015 Mar;56(2):360-5.
    PMID: 25324538 DOI: 10.1093/jrr/rru091
    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments.
    Matched MeSH terms: Microscopy, Fluorescence/instrumentation*
  12. Chinigarzadeh A, Muniandy S, Salleh N
    Environ Toxicol, 2017 Mar;32(3):832-844.
    PMID: 27235753 DOI: 10.1002/tox.22283
    We hypothesized that genistein can interfere with the regulation of uterine fluid volume, secretion rate and expression of aquaporin in the uterus by female sex-steroids, i.e., estrogen and progesterone. Therefore, the aims of this study were to investigate changes in these parameters in the presence of genistein and female sex-steroids.

    METHODS: Female Sprague-Dawley rats were ovariectomized and received 3-days estradiol-17β benzoate (E2) plus genistein (25, 50, or 100 mg kg(-1)  day(-1) ) or 3-days E2 followed by 3-days E2 plus progesterone with genistein (25, 50, or 100 mg kg(-1)  day(-1) ). A day after last treatment, uterine fluid secretion rate was determined by in vivo uterine perfusion with rats under anesthesia. Animals were sacrificed and uteri were harvested and subjected for histological analyses. Luminal/outer uterine circumference was determined and distribution of AQP-1, 2, 5, and 7 in endometrium was visualized by immunofluorescence. Expression of AQP-1, 2, 5, and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR respectively.

    RESULTS: Combined treatment of E2 with high dose genistein (50 and 100 mg kg(-1)  day(-1) ) resulted in significant decrease in uterine fluid volume, secretion rate and expression of AQP-1, 2, 5, and 7 proteins and mRNAs in uterus (p 

    Matched MeSH terms: Microscopy, Fluorescence
  13. Yang C, Li X, Li Q, Zhang B, Li H, Lin J
    Neuroreport, 2017 Dec 06;28(17):1180-1185.
    PMID: 28953094 DOI: 10.1097/WNR.0000000000000903
    Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.
    Matched MeSH terms: Microscopy, Fluorescence
  14. Ahmed Hamdi OA, Syed Abdul Rahman SN, Awang K, Abdul Wahab N, Looi CY, Thomas NF, et al.
    ScientificWorldJournal, 2014;2014:321943.
    PMID: 25126594 DOI: 10.1155/2014/321943
    Curcuma zedoaria also known as Temu putih is traditionally used in food preparations and treatment of various ailments including cancer. The cytotoxic activity of hexane, dichloromethane, ethyl acetate, methanol, and the methanol-soxhlet extracts of Curcuma zedoaria rhizomes was tested on two human cancer cell lines (Ca Ski and MCF-7) and a noncancer cell line (HUVEC) using MTT assay. Investigation on the chemical components in the hexane and dichloromethane fractions gave 19 compounds, namely, labda-8(17),12 diene-15,16 dial (1), dehydrocurdione (2), curcumenone (3), comosone II (4), curcumenol (5), procurcumenol (6), germacrone (7), zerumbone epoxide (8), zederone (9), 9-isopropylidene-2,6-dimethyl-11-oxatricyclo[6.2.1.0(1,5)]undec-6-en-8-ol (10), furanodiene (11), germacrone-4,5-epoxide (12), calcaratarin A (13), isoprocurcumenol (14), germacrone-1,10-epoxide (15), zerumin A (16), curcumanolide A (17), curcuzedoalide (18), and gweicurculactone (19). Compounds (1-19) were evaluated for their antiproliferative effect using MTT assay against four cancer cell lines (Ca Ski, MCF-7, PC-3, and HT-29). Curcumenone (3) and curcumenol (5) displayed strong antiproliferative activity (IC50 = 8.3 ± 1.0 and 9.3 ± 0.3 μg/mL, resp.) and were found to induce apoptotic cell death on MCF-7 cells using phase contrast and Hoechst 33342/PI double-staining assay. Thus, the present study provides basis for the ethnomedical application of Curcuma zedoaria in the treatment of breast cancer.
    Matched MeSH terms: Microscopy, Fluorescence
  15. Jeevanandam J, Chan YS, Danquah MK, Law MC
    Appl Biochem Biotechnol, 2020 Apr;190(4):1385-1410.
    PMID: 31776944 DOI: 10.1007/s12010-019-03166-z
    Insulin resistance is one of the major factors that leads to type 2 diabetes. Although insulin therapies have been shown to overcome insulin resistance, overweight and hypoglycemia are still observed in most cases. The disadvantages of insulin therapies have driven the interest in developing novel curative agents with enhanced insulin resistance reversibility. Magnesium deficiency has also been recognized as a common problem which leads to insulin resistance in both type 1 and 2 diabetes. Oxide nanoparticles demonstrate highly tunable physicochemical properties that can be exploited by engineers to develop unique oxide nanoparticles for tailored applications. Magnesium supplements for diabetic cells have been reported to increase the insulin resistance reversibility. Hence, it is hypothesized that magnesium oxide (MgO) nanoparticles could be molecularly engineered to offer enhanced therapeutic efficacy in reversing insulin resistance. In the present work, morphologically different MgO nanoparticles were synthesized and evaluated for biophysical characteristics, biocompatibility, cytotoxicity, and insulin resistance reversibility. MTT assay revealed that hexagonally shaped MgO nanoparticles are less toxic to 3T3-L1 adipose cells (diabetic) compared with spherically and rod-shaped MgO nanoparticles. MTT assays using VERO cells (normal, non-diabetic) showed that 400 μg/ml of hexagonal MgO nanoparticles were less toxic to both diabetic and non-diabetic cells. DNS glucose assay and western blot showed that hexagonally shaped MgO nanoparticles had reversed 29.5% of insulin resistance whilst fluorescence microscopy studies indicated that the insulin resistance reversal is due to the activation of intracellular enzymes. The probable mechanism for MgO nanoparticles to induce cytotoxic effect and insulin resistance reversal is discussed.
    Matched MeSH terms: Microscopy, Fluorescence
  16. Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Khosroushahi AY
    Anaerobe, 2014 Dec;30:51-9.
    PMID: 25168457 DOI: 10.1016/j.anaerobe.2014.08.009
    Lactobacillus and Lactococcus strains isolated from food products can be introduced as probiotics because of their health-promoting characteristics and non-pathogenic nature. This study aims to perform the isolation, molecular identification, and probiotic characterization of Lactobacillus and Lactococcus strains from traditional Iranian dairy products. Primary probiotic assessments indicated high tolerance to low pH and high bile salt conditions, high anti-pathogenic activities, and susceptibility to high consumption antibiotics, thus proving that both strains possess probiotic potential. Cytotoxicity assessments were used to analyze the effects of the secreted metabolite on different cancer cell lines, including HT29, AGS, MCF-7, and HeLa, as well as a normal human cell line (HUVEC). Results showed acceptable cytotoxic properties for secreted metabolites (40 μg/ml dry weight) of Lactococcus lactis subsp. Lactis 44Lac. Such performance was similar to that of Taxol against all of the treated cancer cell lines; however, the strain exhibited no toxicity on the normal cell line. Cytotoxic assessments through flow cytometry and fluorescent microscopy demonstrated that apoptosis is the main cytotoxic mechanism for secreted metabolites of L. lactis subsp. Lactis 44Lac. By contrast, the effects of protease-treated metabolites on the AGS cell line verified the protein nature of anti-cancer metabolites. However, precise characterizations and in vitro/in vivo investigations on purified proteins should be conducted before these metabolites are introduced as potential anti-cancer therapeutics.
    Matched MeSH terms: Microscopy, Fluorescence
  17. Moo EK, Abusara Z, Abu Osman NA, Pingguan-Murphy B, Herzog W
    J Biomech, 2013 Aug 9;46(12):2024-31.
    PMID: 23849134 DOI: 10.1016/j.jbiomech.2013.06.007
    Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in cell responses to mechanical stimuli that depend on the microscopic approach and the thresholding methods used and may result in contradictory interpretations.
    Matched MeSH terms: Microscopy, Fluorescence, Multiphoton*
  18. Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, et al.
    Int J Mol Sci, 2023 Jul 29;24(15).
    PMID: 37569560 DOI: 10.3390/ijms241512186
    The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment.
    Matched MeSH terms: Microscopy, Fluorescence
  19. Loh SY, Giribabu N, Gholami K, Salleh N
    Arch Biochem Biophys, 2017 Jan 15;614:41-49.
    PMID: 28024836 DOI: 10.1016/j.abb.2016.12.008
    We hypothesized that higher blood pressure in males than females could be due to testosterone effects on aquaporin (AQP) expression in kidneys.

    METHODS: Orchidectomized adult male Sprague-Dawley (SD) rats received seven days subcutaneous testosterone treatment (125 μg/kg/day or 250 μg/kg/day), with or without flutamide or finasteride. Following completion of treatment, MAP was determined in rats under anaesthesia via carotid artery cannulation. In another cohort of rats, kidneys were removed following sacrifice and AQP-1, 2, 3, 4, 6 and 7 protein and mRNA levels were determined by Western blotting and Real-time PCR respectively. Distribution of AQP subunits' protein in the nephrons were visualized by immunofluorescence.

    RESULTS: Testosterone caused MAP, AQP-1, 2, 4, 6 and 7 protein and mRNA levels in kidneys to increase while AQP-3 protein and mRNA levels in kidneys to decrease (p 

    Matched MeSH terms: Microscopy, Fluorescence
  20. Har CH, Keong CK
    Asia Pac J Clin Nutr, 2005;14(4):374-80.
    PMID: 16326644
    The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.
    Matched MeSH terms: Microscopy, Fluorescence
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links