Two hundred and thirty soil samples from different localities were examined for the presence of geophilic keratinophilic fungi. Six species namely Microsporum gypseum--34 isolates, Chrysosporium keratinophilum--29, C. tropicum--20, Keratinophyton terreum--4, Trichophyton terrestre--8 and Chrysosporium species--3--were isolated. Most of these fungi were recovered from garden, field and river bank soil. The importance of these findings is briefly discussed.
Keratinous wastes have increasingly become a problem and accumulate in the environment mainly in the form of feathers, generated mainly from a large number of poultry industries. As keratins are very difficult to degrade by general proteases, they pose a major environmental problem. Therefore, microorganisms which would effectively degrade keratins are needed for recycling such wastes. A geophilic dermatophyte, Microsporum fulvum IBRL SD3 which was isolated from a soil sample collected from a chicken feather dumping site using a baiting technique, was capable to produce keratinase significantly. The crude keratinase was able to degrade whole chicken feathers effectively. The end product of the degradation was protein that contained essential amino acids and may have potential application in animal feed production. Thus, M. fulvum could be a novel organism to produce keratinase for chicken feathers degradation.
A 2-year-old, exotic shorthair cat presented with baldness and mild scaling on trunk that was confirmed as Microsporum canis (M. canis) infection by the following methods. Wood's lamp and trichogram were used to demonstrate fungal elements suggestive of dermatophytosis consistent with M. canis. Dermatophyte test medium (DTM) and polymerase chain reaction (PCR) were used for identification. E-test and broth microdilution test were then utilized to estimate antifungal minimal inhibitory concentrations (MICs) towards ITZ and TRF respectively. The strain was isolated from the patient and revealed TRF MIC >32 µg/ml and ITZ MIC 0.023 µg/ml. Patient was cured of dermatophytosis with systemic ITZ.
The aqueous and ethanol extracts of Stichopus chloronotus Brandt were investigated for their effectiveness against guinea pig dermatophytosis caused by Microsporum canis and Trichophyton mentagrophytes using the hair root invasion test. The ethanol extract at 10 mg/ml showed 82.8 % efficacy against T. mentagrophytes while the aqueous extract at similar concentration showed 84.8% efficacy against M. canis infection, as compared to econazole which showed 100% efficacy against both infections. No adverse effect on the skin was observed in the treated animals. In conclusion, aqueous and ethanol extracts of S. chloronotus showed high antimycotic activity against experimentally induced dermatophytosis in guinea pigs.
Atratoxin B1 which was extracted from a local sea cucumber, Holothuria atra is a potential antifungal agent against dermatophytes. Exposure of Microsporum canis mycelia inoculated into Sabouraud glucose agar medium to the 10 mg/ml atratoxin B1 solution, resulted in complete suppression of the fungal growth. Prolonged exposure to the atratoxin B] (72 hours) resulted with necrosis in a substantial portion of the existing hyphae. The main anomalies noted were the abnormally shaped hyphae and the alterations in its morphology and cytology.
Atratoksin B] yang diekstrak daripada timun laut tempatan, Holothuria atra, adalah suatu agen antikulat yang berpotensi terhadap dermatofit. Pendedahan miselium Microsporum canis yang diinokulat ke dalam medium agar glukosa Sabouraud kepada larutan atratoksin B] berkepekatan 10 mg/ml, mengakibatkan penindasan lengkap dalam pertumbuhannya. Pendedahan yang lebih lama kepada larutan atratoksin B] (72 jam) mengakibatkan nekrosis berlaku pada sebahagian besar hifanya. Keganjilan yang jelas berlaku adalah ketidaknormalan pada bentuk hifanya dan juga pengubahsuaian yang terjadi pada morfologi dan sitologinya.
To clarify the terbinafine (TRF) resistance mechanism in a TRF-resistant strain of Microsporum canis, the expression of the pleiotropic drug resistance (PDR1), multidrug resistance (MDR1), MDR2 and MDR4 genes were investigated by real-time quantitative PCR (RT-qPCR) analysis, given the known interaction of the corresponding proteins with antifungals and with the efflux blocker FK506. The expression of the PDR1, MDR1, MDR2 and MDR4 genes was 2-4 times higher in the TRF-resistant strain grown in the presence of 0.14 µg/mL of TRF than in TRF-susceptible strains cultured in the absence of TRF. The TRF-resistant strain exhibited MICs of > 32 µg/mL for TRF alone; this resistance was attenuated to an MIC of 8 µg/mL in the presence of FK506, indicating that the TRF inhibitory concentration index value was
Ethanolic extract of Cassia alata leaves was investigated for its antimicrobial activities on several microorganisms including bacteria, yeast, dermatophytic fungi and non-dermatophytic fungi. In vitro, the extract exhibited high activity against various species of dermatophytic fungi but low activity against non-dermatophytic fungi. However, bacterial and yeast species showed resistance against in vitro treatment with the extract. The minimum inhibitory concentration (MIC) values of the extract revealed that Trichophyton mentagorphytes var. interdigitale, Trichophyton mentagrophytes var. mentagorophytes, Trichophyton rubrum and Microsporum gypseum had the MIC of 125 mg/ml, whereas Microsporum canis had the MIC of 62.5 mg/ml. The inhibition can be observed on the macroconidia of Microsporum gypseum which resulted in structural degeneration beyond repair. The mechanism of inhibition can be related to the cell leakage as observed by irregular, wrinkle shape and loss in rigidity of the macroconidia.
The leaf and bark oils of Cinnamomum verum J.S. Presl. were examined for their antifungal activity against 6 dermatophytes (Trichophyton rubrum, T. mentagrophytes, T. tonsurans, Microsporum canis, M. gypseum and M. audouini), one filamentous fungi (Aspergillus fumigatus) and 5 strains of yeasts (Candida albicans, Ca. glabrata, Ca. tropicalis, Ca. parapsilosis and Crytococcus neoformans) by using the broth microdilution method. The antifungal activities of 4 standard compounds (cinnamaldehyde, eugenol, linalool and a-terpineol) which were major constituents in the oils were also investigated in an effort to correlate the effectiveness of the oils with those of the components of the oils. The combined antifungal effect of the oils against M. canis, M. gypseum and Cr. neoformans was investigated by the checkerboard assay. Isobolograms were constructed and Fractional Inhibitory Concentrations Index (FICI) were calculated to determine the combination effects between the oils. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography- mass spectrometry (GC-MS). The oils showed strong activity against all the tested fungi with Minimum Inhibition Concentration (MIC) values ranging from 0.04 to 0.31 mg/ml. Cinnamaldehyde which was the most abundant component of the bark oil of C. verum showed the strongest activity against all the fungi studied. Based on the results of the assay on standard samples, it may be that the high levels of cinnamaldehyde and eugenol in the oils and in combination with the minor components could be responsible for the high antifungal activity of the oils. The antifungal effect of the leaf and bark oils of C. verum in combination against the tested fungi was not synergistic. However, the effect was additive against M. gypseum and antagonistic against Cr. neoformans and M. canis.
This study was performed to evaluate the antifungal activities of methanolic fractions from the stem bark of Entada spiralis Ridl. against human dermatophytes and yeast-like fungus in vitro. Three types of human dermatophyte, Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102 and Trichophyton tonsurans ATCC 28942, and one yeast-like fungus, Candida glabrata ATCC 66032, were tested against the methanolic fractions labelled FA1, FA4 and FA5. T. mentagrophytes, T. tonsuran and M. gypseum were susceptible to all tested fractions in a concentration-dependent manner whereas C. glabrata was resistant. Fraction FA1 at a concentration of 400 mg/mL was found to exhibit the highest antifungal activity with the inhibition zone diameter of 22 mm (T. mentagrophytes). This fraction showed a minimum inhibitory concentration MIC of 0.097 mg/mL while the MIC value for the fraction FA4 and fraction FA5 was 3.12 mg/ml and 1.56 mg/ml respectively. Agar overlay bioautography assay results showed that most of the bioactive compounds were found in the fraction FA1. Based on these findings, it can be concluded that the stem bark extracts of E. spiralis can be a future source of potent natural antimicrobial drugs for superficial skin diseases.
Crude ethanol and water extract of leaves and barks from Cassia alata were tested in vitro against fungi, (Aspergillus fumigatus and Microsporum canis), yeast (Candida albicans) and bacteria (Staphylococcus aereus and Escherichia coli). C. albicans showed concentration-dependent susceptibility towards both the ethanol and water extracts from the barks, but resistant towards the extracts of leaves. The degree of susceptibility varied, the water extract from barks showed bigger inhibition zone than the ethanol extracts (12-16 and 10-14 mm, diameter respectively). The growth of Aspergillus fumigatus and Microsporum canis were not affected by all types of the plant extracts. Results were comparable to standard antifungal drug Tioconazole (18 mm diameter) at equivalent concentration. The anti-bacterial activity of C. alata extracts on S. aureus was detected with only the leaves extracts using water and ethanol. The water extract exhibited higher antibacterial activity than the ethanol extract from leaves (inhibition zones of 11-14 and 9-11 mm, respectively). E. coli showed resistance to all types of extracts. Based on the current findings, it can be concluded that this plant has antimicrobial activity, which is as potent as standard antimicrobial drugs against certain microorganisms.
A series of new pyrazoline derivatives (1b-4c) bearing N-acyl arms and nine to twelve carbon long alkoxy side chains was synthesized and characterized on the basis of spectroscopic data and microanalysis. The nature of self-assembly to understand the interplay of alkoxy chain crystallization and various supramolecular interactions was investigated using single crystal X-ray diffraction studies. Interesting self-assembled supramolecular structures of 1b and 4c were observed in the crystal lattice owing to various CH⋯O, H⋯H, CH⋯π, lonepair⋯π and π⋯π interactions. Further, all the synthesized compounds (1b-4c) were screened for their in vitro antifungal and anti-inflammatory activities. Compounds 2b, 3b, 2c and 3c showed significant to moderate antifungal activity against Microsporum canis whereas most of the other compounds were found inactive against all the five tested fungal strains. Good anti-inflammatory activity was observed for compounds 1b with IC50 value 331 μM compared to 273 μM for Indomethacine, a standard reference drug. The bio-activity data demonstrates the relationship between lipophilicity, solubility and bioavailability.