Displaying publications 1 - 20 of 121 in total

Abstract:
Sort:
  1. Yatabe Y, Kerr KM, Utomo A, Rajadurai P, Tran VK, Du X, et al.
    J Thorac Oncol, 2015 Mar;10(3):438-45.
    PMID: 25376513 DOI: 10.1097/JTO.0000000000000422
    The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutation-positive non-small-cell lung cancer (NSCLC) patients necessitates accurate, timely testing. Although EGFR mutation testing has been adopted by many laboratories in Asia, data are lacking on the proportion of NSCLC patients tested in each country, and the most commonly used testing methods.
    Matched MeSH terms: Mutation/genetics*
  2. Heidari F, Vasudevan R, Mohd Ali SZ, Ismail P, Etemad A, Pishva SR, et al.
    PMID: 25002132 DOI: 10.1177/1470320314538878
    Several studies show that the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene has been associated with hypertension in various populations. The present study sought to determine the association of the I/D gene polymorphism among Malay male essential hypertensive subjects in response to ACE inhibitors (enalapril and lisinopril).
    Matched MeSH terms: INDEL Mutation/genetics*
  3. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: Mutation/genetics
  4. Pfister NT, Fomin V, Regunath K, Zhou JY, Zhou W, Silwal-Pandit L, et al.
    Genes Dev., 2015 Jun 15;29(12):1298-315.
    PMID: 26080815 DOI: 10.1101/gad.263202.115
    Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.
    Matched MeSH terms: Mutation/genetics
  5. Zainuddin N, Jaafart H, Isa MN, Abdullah JM
    Neurol Res, 2004 Jan;26(1):88-92.
    PMID: 14977064
    Recent advances in neuro-oncology have revealed different pathways of molecular oncogenesis in malignant gliomas including loss of heterozygosity on chromosomal regions harboring tumor suppressor genes. In the present study, we performed polymerase chain reaction-loss of heterozygosity (PCR-LOH) analysis using microsatellite markers to identify loss of heterozygosity on chromosomes 10q, 9p, 17p and 13q in the Malays with malignant gliomas. Of 12 cases with allelic losses, seven (58.3%) cases showed LOH on chromosome 10q, three (25.0%) cases showed LOH on chromosome 9p, four (33.3%) cases showed LOH on chromosome 17p and two (16.7%) cases showed LOH on chromosome 13q. The cases include five (41.7%) cases of glioblastoma multiforme, three (25.0%) cases of anaplastic astrocytoma, three (25.0%) cases of anaplastic oligodendroglioma and one (8.3%) case of anaplastic ependymoma. Four cases showed loss of heterozygosity on more than one locus. Our findings showed that loss of heterozygosity on specific chromosomal regions contributes to the molecular pathway of glioma progression in Malay population. In addition, these data provide useful evidence of molecular genetic alterations of malignant glioma in South East Asian patients, particularly in the East Coast of Malaysia.
    Matched MeSH terms: Mutation/genetics*
  6. Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A
    Naunyn Schmiedebergs Arch Pharmacol, 2020 03;393(3):405-417.
    PMID: 31641820 DOI: 10.1007/s00210-019-01730-2
    The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
    Matched MeSH terms: Mutation/genetics
  7. Kang WT, Vellasamy KM, Vadivelu J
    Sci Rep, 2016 09 16;6:33528.
    PMID: 27634329 DOI: 10.1038/srep33528
    Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host's internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei.
    Matched MeSH terms: Mutation/genetics
  8. Ibrahim NF, Yanagisawa D, Durani LW, Hamezah HS, Damanhuri HA, Wan Ngah WZ, et al.
    J Alzheimers Dis, 2017;55(2):597-612.
    PMID: 27716672
    Alzheimer's disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-β (Aβ) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aβ aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aβ fibrils and Aβ oligomers in vitro. Moreover, daily TRF supplementation to AβPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aβ immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AβPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.
    Matched MeSH terms: Mutation/genetics
  9. Guerra GR, Kong JC, Millen RM, Read M, Liu DS, Roth S, et al.
    Cell Death Dis, 2021 Oct 18;12(11):959.
    PMID: 34663790 DOI: 10.1038/s41419-021-04141-5
    Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.
    Matched MeSH terms: Mutation/genetics
  10. Ariffin H, Hainaut P, Puzio-Kuter A, Choong SS, Chan AS, Tolkunov D, et al.
    Proc Natl Acad Sci U S A, 2014 Oct 28;111(43):15497-501.
    PMID: 25313051 DOI: 10.1073/pnas.1417322111
    The Li-Fraumeni syndrome (LFS) and its variant form (LFL) is a familial predisposition to multiple forms of childhood, adolescent, and adult cancers associated with germ-line mutation in the TP53 tumor suppressor gene. Individual disparities in tumor patterns are compounded by acceleration of cancer onset with successive generations. It has been suggested that this apparent anticipation pattern may result from germ-line genomic instability in TP53 mutation carriers, causing increased DNA copy-number variations (CNVs) with successive generations. To address the genetic basis of phenotypic disparities of LFS/LFL, we performed whole-genome sequencing (WGS) of 13 subjects from two generations of an LFS kindred. Neither de novo CNV nor significant difference in total CNV was detected in relation with successive generations or with age at cancer onset. These observations were consistent with an experimental mouse model system showing that trp53 deficiency in the germ line of father or mother did not increase CNV occurrence in the offspring. On the other hand, individual records on 1,771 TP53 mutation carriers from 294 pedigrees were compiled to assess genetic anticipation patterns (International Agency for Research on Cancer TP53 database). No strictly defined anticipation pattern was observed. Rather, in multigeneration families, cancer onset was delayed in older compared with recent generations. These observations support an alternative model for apparent anticipation in which rare variants from noncarrier parents may attenuate constitutive resistance to tumorigenesis in the offspring of TP53 mutation carriers with late cancer onset.
    Matched MeSH terms: Germ-Line Mutation/genetics
  11. Kaur G, Masoud A, Raihan N, Radzi M, Khamizar W, Kam LS
    Indian J Med Res, 2011 Aug;134:186-92.
    PMID: 21911971
    DNA mismatch repair gene (MMR) abnormalities are seen in 95 per cent of hereditary nonpolyposis colorectal cancer (HNPCC) and 10-15 per cent of sporadic colorectal cancers. There are no data on MMR abnormalities in Malaysian colorectal cancer patients. This study was aimed to determine the frequency of abnormal MMR gene protein expression in colorectal carcinoma in Northern Peninsular Malaysia using immunohistochemistry.
    Matched MeSH terms: Germ-Line Mutation/genetics
  12. Wolf NI, Toro C, Kister I, Latif KA, Leventer R, Pizzino A, et al.
    Neurology, 2015 Jan 20;84(3):226-30.
    PMID: 25527264 DOI: 10.1212/WNL.0000000000001157
    To describe the expanding clinical spectrum of a recently described hereditary leukoencephalopathy, hypomyelination with brainstem and spinal cord involvement and leg spasticity, which is caused by mutations in the aspartyl tRNA-synthetase encoding gene DARS, including patients with an adolescent onset.
    Matched MeSH terms: Mutation/genetics*
  13. Goh ZH, Mohd NAS, Tan SG, Bhassu S, Tan WS
    J Gen Virol, 2014 Sep;95(Pt 9):1919-1928.
    PMID: 24878641 DOI: 10.1099/vir.0.064014-0
    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.
    Matched MeSH terms: Point Mutation/genetics
  14. Liu J, Long J, Zhang S, Fang X, Luo Y
    J Pediatr (Rio J), 2013 07 11;89(5):434-43.
    PMID: 23850112 DOI: 10.1016/j.jped.2013.01.008
    OBJECTIVE: To determine whether three variants (388 G>A, 521 T>C, and 463 C>A) of the solute carrier organic anion transporter family member 1B1 (SLCO1B1) are associated with neonatal hyperbilirubinemia.

    DATA SOURCE: The China National Knowledge Infrastructure and MEDLINE databases were searched. The systematic review with meta-analysis included genetic studies which assessed the association between neonatal hyperbilirubinemia and 388 G>A, 521 T>C, and 463 C>A variants of SLCO1B1 between January of 1980 and December of 2012. Data selection and extraction were performed independently by two reviewers.

    SUMMARY OF THE FINDINGS: Ten articles were included in the study. The results revealed that SLCO1B1 388 G>A is associated with an increased risk of neonatal hyperbilirubinemia (OR, 1.39; 95% CI, 1.07-1.82) in Chinese neonates, but not in white, Thai, Latin American, or Malaysian neonates. The SLCO1B1 521 T>C mutation showed a low risk of neonatal hyperbilirubinemia in Chinese neonates, while no significant associations were found in Brazilian, white, Asian, Thai, and Malaysian neonates. There were no significant differences in SLCO1B1 463 C>A between the hyperbilirubinemia and the control group.

    CONCLUSION: This study demonstrated that the 388 G>A mutation of the SLCO1B1 gene is a risk factor for developing neonatal hyperbilirubinemia in Chinese neonates, but not in white, Thai, Brazilian, or Malaysian populations; the SLCO1B1 521 T>C mutation provides protection for neonatal hyperbilirubinemia in Chinese neonates, but not in white, Thai, Brazilian, or Malaysian populations.

    Matched MeSH terms: Mutation/genetics
  15. Liam CK, Wahid MI, Rajadurai P, Cheah YK, Ng TS
    J Thorac Oncol, 2013 Jun;8(6):766-72.
    PMID: 23575413 DOI: 10.1097/JTO.0b013e31828b5228
    Despite available data from other Asian countries, the prevalence of epidermal growth factor receptor (EGFR) mutations among lung adenocarcinoma patients has not been reported in Malaysia. This study sought to determine the frequency of EGFR mutations among multiethnic Malaysian patients diagnosed with lung adenocarcinoma.
    Matched MeSH terms: Mutation/genetics*
  16. Shahrizaila N, Samulong S, Tey S, Suan LC, Meng LK, Goh KJ, et al.
    Muscle Nerve, 2014 Feb;49(2):198-201.
    PMID: 23649551 DOI: 10.1002/mus.23892
    Data regarding Charcot-Marie-Tooth disease is lacking in Southeast Asian populations. We investigated the frequency of the common genetic mutations in a multiethnic Malaysian cohort.
    Matched MeSH terms: Point Mutation/genetics
  17. Mohamad S, Deris ZZ, Yusoff NK, Ariffin TA, Shueb RH
    Braz J Infect Dis, 2012 May-Jun;16(3):284-8.
    PMID: 22729198
    Antiretroviral (ARV) therapy has dramatically reduced morbidity and mortality in human immunodeficiency virus 1 (HIV-1) infected children. However, development of ARV resistance in these children is a major public health problem due to lack of availability of and access to new drugs. This study was conducted in order to identify circulating HIV subtypes and recombinant forms and evaluate the drug resistance mutation patterns in 18 HIV-1 infected children failing ARV treatment in Kelantan, Malaysia. Genotyping for codon 1-99 of protease (PR) and 1-250 of reverse transcriptase (RT) were performed by polymerase chain reaction (PCR) amplification and DNA sequencing. Subsequently, these were phylogenetically analyzed to determine the subtypes. CRF33_01B (44.4%) was found to be the predominant HIV subtype, followed by B (27.8%), CRF15_01B (16.7%) and CRF01_AE (11.1%) subtypes. The most prevalent RT mutations were T215F/V/Y (66.7%), D67G/N (55.6%), K219Q/E/R (44.4%), M184V/I (38.9%), K70R/E (27.8%) and M41L (27.8%), associated with nucleoside reverse transcriptase inhibitors (NRTI) resistance; and K103N (55.6%), G190A (33.3%), and K101P/E/H (27.8%) associated with non-nucleoside reverse transcriptase inhibitors (NNRTI) resistance. The results showed a possible emergence of CRF33_01B as current predominant subtypes/circulating recombinant forms (CRFs), and a high frequency of primary mutations among HIV-1 infected children after failure of ARV therapy in Kelantan, Malaysia.
    Matched MeSH terms: Mutation/genetics*
  18. Khositseth S, Bruce LJ, Walsh SB, Bawazir WM, Ogle GD, Unwin RJ, et al.
    QJM, 2012 Sep;105(9):861-77.
    PMID: 22919024 DOI: 10.1093/qjmed/hcs139
    Distal renal tubular acidosis (dRTA) caused by mutations of the SLC4A1 gene encoding the erythroid and kidney isoforms of anion exchanger 1 (AE1 or band 3) has a high prevalence in some tropical countries, particularly Thailand, Malaysia, the Philippines and Papua New Guinea (PNG). Here the disease is almost invariably recessive and can result from either homozygous or compound heterozygous SLC4A1 mutations.
    Matched MeSH terms: Mutation/genetics*
  19. Ho SL, Tan EL, Sam CK, Goh KL
    J Dig Dis, 2010 Apr;11(2):101-5.
    PMID: 20402836 DOI: 10.1111/j.1751-2980.2010.00423.x
    To determine the prevalence of primary clarithromycin resistance amongst Helicobacter pylori (H. pylori) strains in Malaysian patients with gastroduodenal diseases, by using restriction fragment length polymorphism (RFLP) in domain V of 23S rRNA.
    Matched MeSH terms: Point Mutation/genetics*
  20. Saleh MA, Solayman M, Paul S, Saha M, Khalil MI, Gan SH
    Biomed Res Int, 2016;2016:9142190.
    PMID: 27294143 DOI: 10.1155/2016/9142190
    Despite the reported association of adiponectin receptor 1 (ADIPOR1) gene mutations with vulnerability to several human metabolic diseases, there is lack of computational analysis on the functional and structural impacts of single nucleotide polymorphisms (SNPs) of the human ADIPOR1 at protein level. Therefore, sequence- and structure-based computational tools were employed in this study to functionally and structurally characterize the coding nsSNPs of ADIPOR1 gene listed in the dbSNP database. Our in silico analysis by SIFT, nsSNPAnalyzer, PolyPhen-2, Fathmm, I-Mutant 2.0, SNPs&GO, PhD-SNP, PANTHER, and SNPeffect tools identified the nsSNPs with distorting functional impacts, namely, rs765425383 (A348G), rs752071352 (H341Y), rs759555652 (R324L), rs200326086 (L224F), and rs766267373 (L143P) from 74 nsSNPs of ADIPOR1 gene. Finally the aforementioned five deleterious nsSNPs were introduced using Swiss-PDB Viewer package within the X-ray crystal structure of ADIPOR1 protein, and changes in free energy for these mutations were computed. Although increased free energy was observed for all the mutants, the nsSNP H341Y caused the highest energy increase amongst all. RMSD and TM scores predicted that mutants were structurally similar to wild type protein. Our analyses suggested that the aforementioned variants especially H341Y could directly or indirectly destabilize the amino acid interactions and hydrogen bonding networks of ADIPOR1.
    Matched MeSH terms: Mutation/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links