Displaying publications 1 - 20 of 370 in total

Abstract:
Sort:
  1. Liu Z, Gopinath SCB, Wang Z, Li Y, Anbu P, Zhang W
    Mikrochim Acta, 2021 05 15;188(6):187.
    PMID: 33990848 DOI: 10.1007/s00604-021-04834-w
    A new zeolite-iron oxide nanocomposite (ZEO-IO) was extracted from waste fly ash of a thermal power plant and utilized for capturing aptamers used to quantify the myocardial infarction (MI) biomarker N-terminal prohormone B-type natriuretic peptide (NT-ProBNP); this was used in a probe with an integrated microelectrode sensor. High-resolution microscopy revealed that ZEO-IO displayed a clubbell structure and a particle size range of 100-200 nm. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of Si, Al, Fe, and O in the synthesized ZEO-IO. The limit of detection for NT-ProBNP was 1-2 pg/mL (0.1-0.2 pM) when the aptamer was sandwiched with antibody and showed the doubled current response even at a low NT-ProBNP abundance. A dose-dependent interaction was identified for this sandwich with a linear plot in the concentration range 1 to 32 pg/mL (0.1-3.2 pM) with a determination coefficient R2 = 0.9884; y = 0.8425x-0.5771. Without  sandwich, the detection limit was 2-4 pg/mL (0.2-0.4 pM) and the determination coefficient was R2 = 0.9854; y = 1.0996x-1.4729. Stability and nonfouling assays in the presence of bovine serum albumin, cardiac troponin I, and myoglobin revealed that the aptamer-modified surface is stable and specific for NT-Pro-BNP. Moreover, NT-ProBNP-spiked human serum exhibited selective detection. This new nanocomposite-modified surface helps in detecting NT-Pro-BNP and diagnosing MI at stages of low expression.
    Matched MeSH terms: Nanocomposites/chemistry*
  2. Ikram R, Mohamed Jan B, Vejpravova J, Choudhary MI, Zaman Chowdhury Z
    Nanomaterials (Basel), 2020 Oct 11;10(10).
    PMID: 33050617 DOI: 10.3390/nano10102004
    Nanocomposite materials have distinctive potential for various types of captivating usage in drilling fluids as a well-designed solution for the petroleum industry. Owing to the improvement of drilling fluids, it is of great importance to fabricate unique nanocomposites and advance their functionalities for amplification in base fluids. There is a rising interest in assembling nanocomposites for the progress of rheological and filtration properties. A series of drilling fluid formulations have been reported for graphene-derived nanocomposites as additives. Over the years, the emergence of these graphene-derived nanocomposites has been employed as a paradigm to formulate water-based drilling fluids (WBDF). Herein, we provide an overview of nanocomposites evolution as engineered materials for enhanced rheological attributes in drilling operations. We also demonstrate the state-of-the-art potential graphene-derived nanocomposites for enriched rheology and other significant properties in WBDF. This review could conceivably deliver the inspiration and pathways to produce novel fabrication of nanocomposites and the production of other graphenaceous materials grafted nanocomposites for the variety of drilling fluids.
    Matched MeSH terms: Nanocomposites
  3. Mahmood SK, Razak IA, Ghaji MS, Yusof LM, Mahmood ZK, Rameli MABP, et al.
    Int J Nanomedicine, 2017;12:8587-8598.
    PMID: 29238193 DOI: 10.2147/IJN.S145663
    The healing of load-bearing segmental defects in long bones is a challenge due to the complex nature of the weight that affects the bone part and due to bending, shearing, axial, and torsional forces. An innovative porous 3D scaffolds implant of CaCO3aragonite nanocomposite derived from cockle shell was advanced for substitute bone solely for load-bearing cases. The biomechanical characteristics of such materials were designed to withstand cortical bone strength. In promoting bone growth to the implant material, an ideal surface permeability was formed by means of freeze drying and by adding copolymers to the materials. The properties of coating and copolymers supplement were also assessed for bone-implant connection resolutions. To examine the properties of the material in advanced biological system, an experimental trial in an animal model was carried out. Critical sized defect of bone was created in rabbit's radial bone to assess the material for a load-bearing application with a short and extended period assessment with histological evaluation of the incorporated implanted material to the bone of the host. Trials in animal models proved that the material has the capability of enduring load-bearing conditions for long-term use devoid of breaking or generating stress that affects the host bone. Histological examination further confirmed the improved integration of the implanted materials to the host bone with profound bone development into and also above the implanted scaffold, which was attained with negligible reaction of the tissues to a foreign implanted material.
    Matched MeSH terms: Nanocomposites/chemistry*
  4. Arjmandi R, Hassan A, Mohamad Haafiz MK, Zakaria Z
    Int J Biol Macromol, 2015 Nov;81:91-9.
    PMID: 26234577 DOI: 10.1016/j.ijbiomac.2015.07.062
    In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Young's modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA.
    Matched MeSH terms: Nanocomposites/ultrastructure; Nanocomposites/chemistry*
  5. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES
    Int J Biol Macromol, 2019 Feb 15;123:379-388.
    PMID: 30447353 DOI: 10.1016/j.ijbiomac.2018.11.124
    Nanofibrillated cellulose (NFCs) were extracted from sugar palm fibres (SPS) in two separate stages; delignification and mercerization to remove lignin and hemicellulose, respectively. Subsequently, the obtained cellulose fibres were then mechanically extracted into nanofibres using high pressurized homogenization (HPH). The diameter distribution sizes of the isolated nanofibres were dependent on the cycle number of HPH treatment. TEM micro-images displayed the decreasing trend of NFCs diameter, from 21.37 to 5.5 nm when the number of cycle HPH was increased from 5 to 15 cycles, meanwhile TGA and XRD analysis showed that the degradation temperature and crystallinity of the NFCs were slightly increased from 347 to 347.3 °C and 75.38 to 81.19% respectively, when the number of cycles increased. Others analysis also were carried on such as FT-IR, FESEM, AFM, physical properties, zeta potential and yield analysis. The isolated NFCs may be potentially applied in various application, such as tissue engineering scaffolds, bio-nanocomposites, filtration media, bio-packaging and etc.
    Matched MeSH terms: Nanocomposites
  6. Barahuie F, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Zainal Z
    Int J Nanomedicine, 2013;8:1975-87.
    PMID: 23737666 DOI: 10.2147/IJN.S42718
    In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: "PANE" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and "PAND" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 μg/mL for PANE and 36.0 μg/mL for PAND for MCF-7 cells, and 19.8 μg/mL for PANE and 30.3 μg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells.
    Matched MeSH terms: Nanocomposites/chemistry*
  7. Hussein MZ, Hashim N, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2009 Mar;9(3):2140-7.
    PMID: 19435093
    Hybridization of beneficial organic guest with inorganic host affords scientists an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications, especially for controlled delivery of beneficial agent and storage. A new layered organic-inorganic nanohybrid material containing an agrochemical, 4-(2,4-dichlorophenoxy)butyrate (DPBA) in Zn-Al-layered double hydroxide inorganic interlayer was synthesised by direct and indirect methods. Both methods yielded mesoporous-type, phase pure, well-ordered layered nanohybrids with similar basal spacing of 28.5-28.7 angstroms and organic loading of around 54.3%. Compared to the material prepared by direct method, the ion exchanged product inherited more of the host's properties especially the pore structure and the organic moiety is also more easily released. This shows that the method of preparation plays an important role in determining the resulting physicochemical properties, in particular the release property and therefore can be used as a means to tune up the release property of the beneficial agent.
    Matched MeSH terms: Nanocomposites/chemistry*
  8. Hussein MZ, Sarijo SH, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2007 Aug;7(8):2852-62.
    PMID: 17685307
    Layered organic-inorganic hybrid nanocomposite material was synthesised using 4-chlorophenoxyacetate (4CPA) as guest anion intercalated into the Zn-Al layered double hydroxide inorganic host by direct co-precipitation method at pH = 7.5 and Zn to Al molar ratio of 4. Both PXRD and FTIR results confirmed that the 4CPA was successfully intercalated into the Zn-AI-LDH interlayer. As a result, a well-ordered nanolayered organic-inorganic hybrid nanocomposite, with the expansion of the basal spacing from 8.9 angstroms in the layered double hydroxide to 20.1 angstroms in the resulting nanocomposite was observed. The FTIR spectrum of the nanocomposite (ZAC) showed that it composed spectral features of Zn-AI-LDH (ZAL) and 4CPA. The nanocomposites synthesized in this work are of mesoporous-type containing 39.8% (w/w) of 4CPA with mole fraction of Al3+ in the inorganic brucite-like layers (xAI) of 0.224. The release studies showed a rapid release of the 4CPA for the first 600 min, and more sustained thereafter. The total amount of 4CPA released from the nanocomposite interlayer into the aqueous solution were 21%, 66%, and 72% in 0.0001, 0.00025, and 0.0005 M sodium carbonate, respectively. In distilled water, about 75, 35, and 57% of 4CPA could be released in 1000 min, when the pH of the release media was set at 3, 6.25, and 12, respectively. In comparison with a structurally similar organic moiety with one more chlorine atom at the 2-position of the aromatic ring, namely 2,4-dichlorophenoxyacetate (24D), the 4CPA showed a slower release rate. The slightly bulkier organic moiety of 24D together with the presence of chlorine atom at the 2-position presumably had contributed to its higher release rate, and it seems that these factors may be exploited for tuning the release rate of intercalated guest anions with similar properties. This study suggests that layered double hydroxide can be used as a carrier for an active agent and the chemical structure of the intercalated moiety can be used to tune the desired release kinetics of the beneficial agent.
    Matched MeSH terms: Nanocomposites/chemistry*
  9. Barahuie F, Hussein MZ, Abd Gani S, Fakurazi S, Zainal Z
    Int J Nanomedicine, 2014;9:3137-49.
    PMID: 25061291 DOI: 10.2147/IJN.S59541
    BACKGROUND: We characterize a novel nanocomposite that acts as an efficient anticancer agent.

    METHODS: This nanocomposite consists of zinc layered hydroxide intercalated with protocatechuate (an anionic form of protocatechuic acid), that has been synthesized using a direct method with zinc oxide and protocatechuic acid as precursors.

    RESULTS: The resulting protocatechuic acid nanocomposite (PAN) showed a basal spacing of 12.7 Å, indicating that protocatechuate was intercalated in a monolayer arrangement, with an angle of 54° from the Z-axis between the interlayers of the zinc layered hydroxide, and an estimated drug loading of about 35.7%. PAN exhibited the properties of a mesoporous type material, with greatly enhanced thermal stability of protocatechuate as compared to its free counterpart. The presence of protocatechuate in the interlayers of the zinc layered hydroxide was further supported by Fourier transform infrared spectroscopy. Protocatechuate was released from PAN in a slow and sustained manner. This mechanism of release was well represented by a pseudo-second order kinetics model. PAN has shown increased cytotoxicity compared to the free form of protocatechuic acid in all cancer cell lines tested. Tumor growth suppression was extensive, particularly in HepG2 and HT29 cell lines.

    CONCLUSION: PAN is suitable for use as a controlled release formulation, and our in vitro evidence indicates that PAN is an effective anticancer agent. PAN may have potential as a chemotherapeutic drug for human cancer.

    Matched MeSH terms: Nanocomposites/chemistry*
  10. Ramli M, Hussein MZ, Yusoff K
    Int J Nanomedicine, 2013;8:297-306.
    PMID: 23345976 DOI: 10.2147/IJN.S38858
    A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells.
    Matched MeSH terms: Nanocomposites/administration & dosage; Nanocomposites/chemistry*
  11. Eili M, Shameli K, Ibrahim NA, Yunus WM
    Int J Mol Sci, 2012;13(7):7938-51.
    PMID: 22942682 DOI: 10.3390/ijms13077938
    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.
    Matched MeSH terms: Nanocomposites/chemistry
  12. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
    Matched MeSH terms: Nanocomposites/chemistry
  13. Othman SH, Othman NFL, Shapi'i RA, Ariffin SH, Yunos KFM
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513664 DOI: 10.3390/polym13030390
    This work aims to develop corn starch/chitosan nanoparticles/thymol (CS/CNP/Thy) bio-nanocomposite films as potential food packaging materials that can enhance the shelf life of food. CS/CNP/Thy bio-nanocomposite films were prepared by the addition of different concentrations of thymol (0, 1.5, 3.0, 4.5 w/w%) using a solvent casting method. The resulting films were characterized in terms of optical, mechanical, and water vapor permeability (WVP) properties. The addition of thymol was found to reduce the tensile strength (TS), elongation at break (EAB), and Young's modulus (YM) of the films. Generally, the increment in the concentration of thymol did not significantly affect the TS, EAB, and YM values. The addition of 1.5 w/w% thymol increased the WVP of the films but the WVP reduced with the increase in thymol concentrations. CS/CNP/Thy-3% bio-nanocomposite films demonstrated the potential to lengthen the shelf life of cherry tomatoes packed with the films, whereby the cherry tomatoes exhibited no significant changes in firmness and the lowest weight loss. In addition, no mold growth was observed on the sliced cherry tomatoes that were in direct contact with the films during 7 days of storage, proving the promising application of the films as active food packaging materials.
    Matched MeSH terms: Nanocomposites
  14. Tarawneh MA, Saraireh SA, Chen RS, Ahmad SH, Al-Tarawni MAM, Yu LJ
    Radiat Phys Chem Oxf Engl 1993, 2021 Feb;179:109168.
    PMID: 33100612 DOI: 10.1016/j.radphyschem.2020.109168
    A thermoplastic elastomer (TPE) based nanocomposite with the same weight ratio of hybrid nanofillers composed of carbon nanotubes (CNTs) and montmorillonite nanoclay (DK4) was prepared using a melt blending technique with an internal mixer. The TPE composite was blended from polylactic acid (PLA), liquid natural rubber (LNR) as a compatibilizer and natural rubber (NR) in a volume ratio of 70:10:20, respectively. The weight ratio of CNTs and DK4 was 2.5 wt%. The prepared samples were exposed to gamma radiation at range of 0-250 kGy. After exposure to gamma radiation, the mechanical, thermo-mechanical, thermal and electrical conductivity properties of the composites were significantly higher than unirradiated TPE composites as the irradiation doses increased up to 150 kGy. Transmission electron microscopy (TEM) micrographs revealed the good distribution and interaction between the nano-fillers and the matrix in the prepared TPE hybrid nanocomposites. In summary, the findings from this work definite that gamma irradiation might be a viable treatment to improve the properties of TPE nanocomposite for electronic packaging applications.
    Matched MeSH terms: Nanocomposites
  15. Baig U, Gondal MA, Alam MF, Wani WA, Younus H
    J. Photochem. Photobiol. B, Biol., 2016 Nov;164:244-255.
    PMID: 27710872 DOI: 10.1016/j.jphotobiol.2016.09.034
    Cancer and pathogenic microbial diseases have terribly affected human health over a longer period of time. In response to the increasing casualties due to cancer and microbial diseases, unique poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were prepared via in-situ oxidative chemical polymerization in this work. The poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were well characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. DNA binding studies by UV-Visible and fluorescence spectroscopic investigations indicated strong binding affinities of poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite; leading to structural damage of DNA. Poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed stronger interactions with DNA as compared to poly(3-methylthiophene) and from dye displacement assay it was confirmed that mode of binding of both the formulations was intercalative. The antimicrobial screening revealed that polymer and its composite displayed stronger antibacterial effects than ampicillin against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhimurium. Besides, the poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed dose dependent effects towards estrogen receptor positive breast cancer (MCF-7) and estrogen receptor negative breast cancer (MDA-MB-231) cell lines; with poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showing better activities against both cell lines. In all in-vitro biological investigations, poly(3-methylthiophene)-titanium(IV)phosphate composite showed superior properties to that of the pure poly(3-methylthiophene), which encouraged us to suggest its potential as future therapeutic gear in drug delivery and other allied fields.
    Matched MeSH terms: Nanocomposites*
  16. Abdul Jalil NAS, Aboelazm E, Khe CS, Ali GAM, Chong KF, Lai CW, et al.
    PLoS One, 2024;19(2):e0292737.
    PMID: 38324619 DOI: 10.1371/journal.pone.0292737
    The transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance. This study explores using an external magnetic field to mitigate ion transfer resistance and enhance capacitance in magnetite-reduced graphene oxide (M-rGO) nanocomposites. M-rGO nanocomposites with varying weight ratios of magnetite were synthesized and comprehensively characterized. Characterization highlighted the difference in certain parameters such as C/O ratio, the Id/Ig ratio, surface area and particle size that contribute towards alteration of M-rGO's capacitive behaviour. Electrochemical studies demonstrated that applying a magnetic field increased specific capacitance by approximately 20% and reduced resistance by 33%. Notably, a maximum specific capacitance of 16.36 F/g (at a scan rate of 0.1 V/s) and 27.24 F/g (at a current density of 0.25 A/g) was achieved. These improvements were attributed to enhanced ion transportation and migration at the electrode/electrolyte interface, lowering overall resistance. However, it was also observed that the aforementioned parameters can also limit the M-rGO's performance, resulting in saturated capacitive state despite a reduced resistance. The integration of magnetic fields enhances energy storage in nanocomposite systems, necessitating further investigation into underlying mechanisms and practical applications.
    Matched MeSH terms: Nanocomposites*
  17. Ong WJ, Tan LL, Chai SP, Yong ST
    Chem Commun (Camb), 2015 Jan 18;51(5):858-61.
    PMID: 25429376 DOI: 10.1039/c4cc08996k
    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.
    Matched MeSH terms: Nanocomposites
  18. Al-Ani LA, AlSaadi MA, Kadir FA, Hashim NM, Julkapli NM, Yehye WA
    Eur J Med Chem, 2017 Oct 20;139:349-366.
    PMID: 28806615 DOI: 10.1016/j.ejmech.2017.07.036
    Early detection and efficient treatment of cancer disease remains a drastic challenge in 21st century. Throughout the bulk of funds, studies, and current therapeutics, cancer seems to aggressively advance with drug resistance strains and recurrence rates. Nevertheless, nanotechnologies have indeed given hope to be the next generation for oncology applications. According to US National cancer institute, it is anticipated to revolutionize the perspectives of cancer diagnosis and therapy. With such success, nano-hybrid strategy creates a marvelous preference. Herein, graphene-gold based composites are being increasingly studied in the field of oncology, for their outstanding performance as robust vehicle of therapeutic agents, built-in optical diagnostic features, and functionality as theranostic system. Additional modes of treatments are also applicable including photothermal, photodynamic, as well as combined therapy. This review aims to demonstrate the various cancer-related applications of graphene-gold based hybrids in terms of detection and therapy, highlighting the major attributes that led to designate such system as a promising ally in the war against cancer.
    Matched MeSH terms: Nanocomposites/therapeutic use*; Nanocomposites/chemistry
  19. Lui, J.L., Chan, C.L., Yap, K.T.
    Ann Dent, 2006;13(1):6-11.
    MyJurnal
    The aim of the study was to determine the depth of cure of a new nanocomposite when exposed to different curing times and also when different shades were polymerized. The nanocomposite, Filtek Supreme (3M ESPE), was packed into 96 plastic cylindrical moulds measuring 4 mm in internal diameter and 8 mm in length and then polymerized using a conventional quartz-tungsten-halogen light curing unit. The first part of the study involved curing 16 samples each of A2 shade of the nanocomposite at exposure times of 20s, 40s, 60s and 120s. For the second part, a similar number of samples of the dentinal opacity shades of A2, B3 and A4 of the nanocomposite were polymerized at a constant exposure time of 40s. The depth of polymerization of the nanocomposite in each sample was measured using a digimatic indicator. Curing depths were found to increase significantly (P < 0.05) with longer exposure time (20s < 40s < 60s < 120s) and decrease significantly with darker shades (A2 > B3 > A4).
    Matched MeSH terms: Nanocomposites
  20. Bera H, Abbasi YF, Lee Ping L, Marbaniang D, Mazumder B, Kumar P, et al.
    Carbohydr Polym, 2020 Feb 15;230:115664.
    PMID: 31887927 DOI: 10.1016/j.carbpol.2019.115664
    Erlotinib-loaded carboxymethyl temarind gum-g-poly(N-isopropylacrylamide)-montmorillonite based semi-IPN nanocomposites were synthesized and characterized for their in vitro performances for lung cancer therapy. The placebo matrices exhibited outstanding biodegradability and pH-dependent swelling profiles. The molar mass (M¯ c) between the crosslinks of these composites was declined with temperature. The solid state characterization confirmed the semi-IPN architecture of these scaffolds. The corresponding drug-loaded formulations displayed excellent drug-trapping capacity (DEE, 86-97 %) with acceptable zeta potential (-16 to -13 mV) and diameter (967-646 nm). These formulations conferred sustained drug elution profiles (Q8h, 77-99 %) with an initial burst release. The drug release profile of the optimized formulation (F-3) was best fitted in the first order kinetic model with Fickian diffusion driven mechanism. The mucin adsorption to F-3 followed Langmuir isotherms. The results of MTT assay, AO/EB staining and confocal analyses revealed that the ERL-loaded formulation suppressed A549 cell proliferation and induced apoptosis more effectively than pristine drug.
    Matched MeSH terms: Nanocomposites/therapeutic use; Nanocomposites/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links