Displaying publications 1 - 20 of 602 in total

Abstract:
Sort:
  1. Goh KW, Say YH
    Tumour Biol., 2015 Sep;36(10):7947-60.
    PMID: 25956278 DOI: 10.1007/s13277-015-3455-6
    γ-synuclein, a neuronal protein of the synuclein family, is involved in carcinogenesis. To investigate its role in colorectal cancer carcinogenesis, we overexpressed γ-synuclein in LS 174T colon adenocarcinoma cell line (termed LS 174T-γsyn). When compared with untransfected/mock transfectants, LS 174T-γsyn had higher mobility in scratch wound assay, tend to scatter more in cell-scattering assay, and had enhanced lamellipodia and filopodia formation in cell-spreading assay. Enhanced adhesion of LS 174T-γsyn to fibronectin and collagen and significantly higher proliferation rate showed that γ-synuclein was able to increase extracellular matrix interaction and promoted proliferation of LS 174T. Higher invasiveness of LS 174T-γsyn was evidenced by enhanced invasion to the bottom of the basement membrane in Boyden chamber assay. However, LS 174T-γsyn were significantly more vulnerable to doxorubicin, vincristine and hydrogen peroxide insults, via apoptotic cell death. LS 174T-γsyn also had reduced anchorage-independent growth as shown by reduced colony formation and reduced anoikis resistance. We found that overexpression of γ-synuclein confers both pro-invasive and doxorubicin-mediated pro-apoptotic properties to LS 174T, where the former was mediated through enhanced cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation, while the latter involved hepatocyte growth factor (HGF) downregulation and subsequent downstream signalling pathways possibly involving extracellular signal-regulated kinases (ERK)1/2, p38α, c-Jun N-terminal kinase (JNK) pan and Signal Transducers and Activators of Transcription (STATs). This unexpected contrasting finding as compared to other similar studies on colon cancer cell lines might be correlated with the degree of tumour advancement from which the cell lines were derived from.
    Matched MeSH terms: Colonic Neoplasms/metabolism
  2. Looi LM, Azura WW, Cheah PL, Ng MH
    Pathology, 2001 Aug;33(3):283-6.
    PMID: 11523925
    This investigation was carried out to gain insight into the prevalence of pS2 expression in invasive ductal breast carcinoma in the Malaysian population and its correlation with oestrogen receptor (ER) protein expression and tumour aggressiveness. Seventy consecutive infiltrating ductal breast carcinomas treated with mastectomy and axillary lymph node clearance were investigated, using the standard avidin-biotin complex immunoperoxidase method with microwave antigen retrieval and commercial monoclonal antibodies (Dako), for expression of pS2 and human ER. This was correlated against histological grade (modified Bloom and Richardson) and the presence of axillary lymph node metastasis of these carcinomas. Four (5.7%) were grade 1, 40 (57.1%) grade 2 and 26 (37.1%) grade 3 tumours. A total of 45 (64%) showed histological evidence of axillary lymph node metastasis. Forty (57%) were ER-positive, while 31 (44%) were pS2-positive. There was a statistically significant correlation between pS2 and ER expressions (chi2-test with Yates correction: P<0.005). There was no correlation between pS2 expression and histological grade (P>0.1) and the presence of lymph node metastasis (P>0.1). Our findings support the views that pS2 may be a co-marker of endocrine responsiveness in invasive breast cancer and that it does not influence breast cancer biology in terms of potential for metastatic spread.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  3. Mishra RK, Ramasamy K, Ahmad NA, Eshak Z, Majeed AB
    J Mater Sci Mater Med, 2014 Apr;25(4):999-1012.
    PMID: 24398912 DOI: 10.1007/s10856-013-5132-x
    Stimuli responsive hydrogels have shown enormous potential as a carrier for targeted drug delivery. In this study we have developed novel pH responsive hydrogels for the delivery of 5-fluorouracil (5-FU) in order to alleviate its antitumor activity while reducing its toxicity. We used 2-(methacryloyloxyethyl) trimetylammonium chloride a positively charged monomer and methacrylic acid for fabricating the pH responsive hydrogels. The released 5-FU from all except hydrogel (GEL-5) remained biologically active against human colon cancer cell lines [HT29 (IC50 = 110-190 μg ml(-1)) and HCT116 (IC50 = 210-390 μg ml(-1))] but not human skin fibroblast cells [BJ (CRL2522); IC50 ≥ 1000 μg ml(-1)]. This implies that the copolymer hydrogels (1-4) were able to release 5-FU effectively to colon cancer cells but not normal human skin fibroblast cells. This is probably due to the shorter doubling time that results in reduced pH in colon cancer cells when compared to fibroblast cells. These pH sensitive hydrogels showed well defined cell apoptosis in HCT116 cells through series of events such as chromatin condensation, membrane blebbing, and formation of apoptotic bodies. No cell killing was observed in the case of blank hydrogels. The results showed the potential of these stimuli responsive polymer hydrogels as a carrier for colon cancer delivery.
    Matched MeSH terms: Colonic Neoplasms/metabolism
  4. Cheah PL, Looi LM
    Malays J Pathol, 2001 Jun;23(1):9-16.
    PMID: 16329542
    p53 is the most commonly mutated gene in human cancers. It encodes a 53 kilodalton protein with several evolutionarily conserved domains viz sequence-specific DNA binding, tetramerisation, SH3 molecule binding, C-terminal and N-terminal. Existing in the cell at a very low level and in a relatively inactive form, p53 protein is increased and activated during periods of cellular stress. Unlike other proteins, the increase in protein level and its activation result from modification of the protein rather than genetic transcriptional or translational upregulation. Normally, Mdm2 protein interacts with p53 protein and effectively targets it for ubiquitin proteolysis within an autoregulatory feedback loop. Phosphorylation at the N-terminus reduces p53 interaction with Mdm2 with a resultant increase in p53 protein level. Modification at the C and N termini via phosphorylation or acetylation upregulates binding to specific DNA targets increasing transcription of these downstream genes. The net effect of p53 protein increase and activation lies in arrest of the cell in cycle which allows time for repair of the incurred damage or apoptosis or death of the cell. Failure of these normal protective and adaptive mechanisms caused by mutation of the p53 gene with product of an abnormal protein, loss of p53 protein through interaction with and degradation by HPV E6 protein or overexpressed Mdm2 etc. permits DNA-damaged cells to continue replicating. Left unchecked, this frequently contributes to tumourigenesis. Various methods have been devised to screen for mutations of the p53 gene, still the most common source of failed p53 mechanism. These include immunohistochemical detection of mutated proteins or identification of altered electrophoretic mobility of mutated p53 sequences. Sequencing of the gene nonetheless remains the most accurate method for determination of mutation. Major advances have been made in p53 research but the most meaningful probably lies in the promising results achieved in tumour therapy where introduction of wild type p53 gene has resulted in regression of non-small-cell lung cancer (NSCLC). Many other notable developments in this field include description of p53 homologues, "gain of function" mutants, p53 polymorphisms, angiogenesis-inhibiting properties of wild type p53 protein etc.
    Matched MeSH terms: Neoplasms/metabolism
  5. Wan Muhaizan WM, Ahmad PK, Phang KS, Arni T
    Malays J Pathol, 2006 Dec;28(2):93-9.
    PMID: 18376798 MyJurnal
    This study was carried out to determine the role of p53 and p21 in the pathogenesis of prostatic adenocarcinoma and their association with tumour grade.
    Matched MeSH terms: Prostatic Neoplasms/metabolism*
  6. Yu F, Bracken CP, Pillman KA, Lawrence DM, Goodall GJ, Callen DF, et al.
    PLoS One, 2015;10(6):e0129190.
    PMID: 26061048 DOI: 10.1371/journal.pone.0129190
    p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs) that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs) are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.
    Matched MeSH terms: Breast Neoplasms/metabolism
  7. Heah KG, Hassan MI, Huat SC
    Asian Pac J Cancer Prev, 2011;12(4):1017-22.
    PMID: 21790244
    INTRODUCTION: Oral squamous cell carcinoma (OSCC) has high local recurrence, partly caused by the lack of clear margin identification on surgical removal of cancerous tissues. Direct visualization by immunostaining and fluorescent in situ hybridization (FISH) in tissue sections gives more definite information about genetic damage at margins with appropriately selected biomarkers.

    AIMS: To determine the usefulness of immunohistochemical techniques and FISH of the tumour suppressor TP 53 gene to identify microinvasion in marginal tissue sections and to relate the possible correlation between protein expression and genetic aberrations in OSCC cases in Malaysia.

    METHODS: Immunohistochemistry and FISH of TP 53 genes were applied on 26 OSCC formalin fixed paraffin embed (FFEP) blocks selected from two oral cancer referral centers in Malaysia.

    RESULTS: For p53 protein immunohistochemistry, 96% of the 26 OSCC studied showed positive immunostaining at the excision margins. In FISH assay, 48.9±9.7% of the cancerous cells were monoploid for p53 probe signals, 41.0±9.5 % were diploid, and 10.2±7.8 % were polyploid. A correlation between p53 immunostaining and TP53 gene aberrations was noted (p< 0.05).

    CONCLUSIONS: Immunohistochemical analysis of p53 protein expression and FISH of TP53 gene could be applied as screening tool for microinvasion of OSCC.

    Matched MeSH terms: Mouth Neoplasms/metabolism
  8. Chowchaikong N, Nilwarangkoon S, Laphookhieo S, Tanunyutthawongse C, Watanapokasin R
    Int J Oncol, 2018 Jun;52(6):2031-2040.
    PMID: 29620273 DOI: 10.3892/ijo.2018.4353
    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  9. Cheah PL, Looi LM, Teoh KH, Mun KS, Nazarina AR
    Asian Pac J Cancer Prev, 2012;13(2):469-72.
    PMID: 22524808
    The present study was conducted to assess utility of p16(INK4a) immunopositivity as a surrogate marker for genomic integration of high-risk human papillomavirus infection (hrHPV). A total of 29 formalin-fixed, paraffin-embedded cervical low-grade squamous intraepithelial lesions (LSILs), 27 high-grade squamous intraepithelial lesions (HSILs) and 53 invasive squamous cell carcinomas (SCCs), histologically-diagnosed between 1st January 2006 to 31st December 2008 at the University of Malaya Medical Centre were stained for p16(INK4a) (CINtec Histology Kit (REF 9511, mtm laboratories AG, Heidelberg, Germany). Immunopositvity was defined as diffuse staining of the squamous cell cytoplasm and or nucleus (involving > 75% of the intraepithelial lesions or SCCs). Staining of basal and parabasal layers of intraepithelial lesions was pre-requisite. One (3.4%) LSIL, 24 (88.9%) HSIL and 46 (86.8%) SCC were p16(INK4a) immunopositive. All normal squamous epithelium did not express p16(INK4). p16(INK4a) expression was significantly lower (p<0.05) in LSIL compared with HSIL and SCC with no difference in expression between HSIL and SCC.The increased p16(INK4a) immunopositivity in HSIL and SCC appears in line with the integrated existence of the hrHPV and may provide more insightful information on risk of malignant transformation of cervical squamous intraepithelial lesions than mere hrHPV detection.
    Matched MeSH terms: Uterine Cervical Neoplasms/metabolism
  10. Eshkoor SA, Ismail P, Rahman SA, Oshkour SA
    Arch Med Res, 2008 Oct;39(7):668-73.
    PMID: 18760195 DOI: 10.1016/j.arcmed.2008.06.003
    Basal cell carcinoma (BCC) develops predominantly in sun-exposed skin in fair-skinned individuals prone to sunburn. BCC typically occurs in adults. High exposure to ultraviolet (UV) radiation increases rate of developing BCC, a slowly growing tumor that occurs in hair-growing squamous epithelium and rarely metastasizes. In genetic studies, BCC patients have cell-cycle abnormalities of different parts of the signaling pathway. Retinoblastoma regulatory pathway is important in cell cycle arrest. In this pathway, p16INK4a, an inhibitor of Rb pathway, binds to CDK4 and CDK6 competitively with cyclin D1 to prevent phosphorylation of tumor suppressor pRB gene. Alteration of this pathway contributes to development of human cancers and also is effective in skin cancers. In this study, we analyzed mRNA expression using in situ RT-PCR and the role of immunohistochemical expression of p16INK4a in BCC.
    Matched MeSH terms: Skin Neoplasms/metabolism
  11. Gao Y, Zhang W, Liu C, Li G
    Sci Rep, 2019 12 11;9(1):18844.
    PMID: 31827114 DOI: 10.1038/s41598-019-54289-6
    Resistance to tamoxifen is a major clinical challenge. Research in recent years has identified epigenetic changes as mediated by dysregulated miRNAs that can possibly play a role in resistance to tamoxifen in breast cancer patients expressing estrogen receptor (ER). We report here elevated levels of EMT markers (vimentin and ZEB1/2) and reduced levels of EMT-regulating miR-200 (miR-200b and miR-200c) in ER-positive breast cancer cells, MCF-7, that were resistant to tamoxifen, in contrast with the naïve parental MCF-7 cells that were sensitive to tamoxifen. Further, we established regulation of c-MYB by miR-200 in our experimental model. C-MYB was up-regulated in tamoxifen resistant cells and its silencing significantly decreased resistance to tamoxifen and the EMT markers. Forced over-expression of miR-200b/c reduced c-MYB whereas reduced expression of miR-200b/c resulted in increased c-MYB We further confirmed the results in other ER-positive breast cancer cells T47D cells where forced over-expression of c-MYB resulted in induction of EMT and significantly increased resistance to tamoxifen. Thus, we identify a novel mechanism of tamoxifen resistance in breast tumor microenvironment that involves miR-200-MYB signaling.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  12. Zainal NS, Gan CP, Lau BF, Yee PS, Tiong KH, Abdul Rahman ZA, et al.
    Phytomedicine, 2018 Jan 15;39:33-41.
    PMID: 29433681 DOI: 10.1016/j.phymed.2017.12.011
    BACKGROUND: The CXCR4-RhoA and PI3K-mTOR signaling pathways play crucial roles in the dissemination and tumorigenesis of oral squamous cell carcinoma (OSCC). Activation of these pathways have made them promising molecular targets in the treatment of OSCC. Zerumbone, a bioactive monocyclic sesquiterpene isolated from the rhizomes of tropical ginger, Zingiber zerumbet (L.) Roscoe ex Sm. has displayed promising anticancer properties with the ability to modulate multiple molecular targets involved in carcinogenesis. While the anticancer activities of zerumbone have been well explored across different types of cancer, the molecular mechanism of action of zerumbone in OSCC remains largely unknown.

    PURPOSE: Here, we investigated whether OSCC cells were sensitive towards zerumbone treatment and further determined the molecular pathways involved in the mechanism of action.

    METHODS: Cytotoxicity, anti-proliferative, anti-migratory and anti-invasive effects of zerumbone were tested on a panel of OSCC cell lines. The mechanism of action of zerumbone was investigated by analysing the effects on the CXCR4-RhoA and PI3K-mTOR pathways by western blotting.

    RESULTS: Our panel of OSCC cells was broadly sensitive towards zerumbone with IC50 values of less than 5 µM whereas normal keratinocyte cells were less responsive with IC50 values of more than 25 µM. Representative OSCC cells revealed that zerumbone inhibited OSCC proliferation and induced cell cycle arrest and apoptosis. In addition, zerumbone treatment inhibited migration and invasion of OSCC cells, with concurrent suppression of endogenous CXCR4 protein expression in a time and dose-dependent manner. RhoA-pull down assay showed reduction in the expression of RhoA-GTP, suggesting the inactivation of RhoA by zerumbone. In association with this, zerumbone also inhibited the PI3K-mTOR pathway through the inactivation of Akt and S6 proteins.

    CONCLUSION: We provide evidence that zerumbone could inhibit the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways leading to the reduced cell viability of OSCC cells. Our results suggest that zerumbone is a promising phytoagent for development of new therapeutics for OSCC treatment.

    Matched MeSH terms: Mouth Neoplasms/metabolism
  13. Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH
    Int Immunopharmacol, 2012 Apr;12(4):594-602.
    PMID: 22330084 DOI: 10.1016/j.intimp.2012.01.014
    Interleukin-6 is one of the factors affecting sensitivity to cytotoxic agents. Therefore, the current study was designed to investigate the role of IL-6 and IL6 receptors in the cytotoxic effects of zerumbone in ovarian and cervical cancer cell lines (Caov-3 and HeLa, respectively). Exposure of both cancer cells to zerumbone or cisplatin demonstrated growth inhibition at a dose-dependent manner as determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,Sdiphenyltetrazolium bromide) reduction assay. Both laser scanning confocal microscopy and TUNEL assay showed typical apoptotic features in treated cells. The studies conducted seems to suggest that zerumbone induces cell death by stimulating apoptosis better than cisplatin, based on the significantly higher percentage of apoptotic cells in zerumbone's treated cancer cells as compared to cisplatin. In addition, zerumbone and cisplatin arrest cancer cells at G2/M phase as analyzed by flow cytometry. Our results indicated that zerumbone significantly decreased the levels of IL-6 secreted by both cancer cells. In contrast, HeLa and Caov-3 cells were still sensitive to cisplatin and zerumbone, even in the presence of exogenous IL-6. However, membrane-bound IL-6 receptor is still intact after zerumbone treatment as demonstrated using an immune-fluorescence technique. This study concludes that the compound, zerumbone inhibits both cancer cell growth through the induction of apoptosis, arrests cell cycle at G2/M phase and inhibits the secretion levels of IL-6 in both cancer cells. Therefore, zerumbone is a potential candidate as a useful chemotherapeutic agent in treating both cervical and ovarian cancers in future.
    Matched MeSH terms: Uterine Cervical Neoplasms/metabolism; Ovarian Neoplasms/metabolism
  14. Zulkhernain NS, Teo SH, Patel V, Tan PJ
    Curr Cancer Drug Targets, 2014;14(8):764-73.
    PMID: 25348017 DOI: 10.2174/1568009614666141028121347
    Targeted therapy, the treatment of cancer based on an underlying genetic alteration, is rapidly gaining favor as the preferred therapeutic approach. To date, although natural products represent a rich resource of bio-diverse drug candidates, only a few have been identified to be effective as targeted cancer therapies largely due to the incompatibilities to current high-throughput screening methods. In this article, we review the utility of a zebrafish developmental screen for bioactive natural product-based compounds that target signaling pathways that are intimately shared with those in humans. Any bioactive compound perturbing signaling pathways identified from phenotypic developmental defects in zebrafish embryos provide an opportunity for developing targeted therapies for human cancers. This model provides a promising tool in the search for targeted cancer therapeutics from natural products.
    Matched MeSH terms: Neoplasms/metabolism
  15. Chaudhry GE, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, Sung YY, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):17-24.
    PMID: 33576208 DOI: 10.31557/APJCP.2021.22.S1.17
    OBJECTIVE: Liver cancer is one of the most common causes of cancer death, with reduced survival rates. The development of new chemotherapeutic agents is essential to find effective cytotoxic drugs that give minimum side effects to the surrounding healthy tissues. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the crude and diethyl ether extract of Xylocarpus mouccensis on the human hepatocellular carcinoma cell line.

    METHODS: The cytotoxicity activity was measured using the MTS assay. The mode of cell death determined by the apoptosis study, DNA fragmentation analysis done by using the TUNEL system. The pathway study or mechanism of apoptosis observed by study caspases 8, 9, 3/7 Glo-caspases method.

    RESULTS: In this study, the methanol extracts prepared from leaf Xylocarpus mouccensis leaf produced cytotoxicity effect with IC50 (72hr) < 30µg/ml. The IC50 value at 72 hours exerted by diethyl ether extract of Xylocarpus moluccensis leaf was 0.22 µg/ml, which was more cytotoxic than to that of crude methanol extract. The results obtained by the colorimetric TUNEL system suggest that methanol crude extract of Xylocarpus moluccensis (leaf), diethyl ether extract of Xylocarpus moluccensis (leaf) and methanol extract of Xylocarpus granatum (bark) induced DNA fragmentation in the HepG2 cell line. Besides, the caspase-Glo assay demonstrated that diethyl ether leaf extract of Xylocarpus moluccensis triggered apoptotic cell death via activation of caspases -8, and -3/7 However, no visible activation was noticed for caspase -9. Furthermore, TLC indicates the presence of potential metabolites in an extract of Xylocarpus moluccensis.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in the extract of Xylocarpus moluccensis as a future therapeutic agent for the treatment of cancer.
    .

    Matched MeSH terms: Liver Neoplasms/metabolism
  16. Tee TT, Cheah YH, Meenakshii N, Mohd Sharom MY, Azimahtol Hawariah LP
    Biochem Biophys Res Commun, 2012 Apr 20;420(4):834-8.
    PMID: 22465013 DOI: 10.1016/j.bbrc.2012.03.083
    Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X(L) expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.
    Matched MeSH terms: Liver Neoplasms/metabolism
  17. Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, et al.
    Oncotarget, 2014 Dec 15;5(23):12273-90.
    PMID: 25401518
    Multidrug resistance in cancer cells arises from altered drug permeability of the cell. We previously reported activation of the Wnt pathway in ABCB1-overexpressed human uterus sarcoma drug-resistant MES-SA/Dx5 cells through active β-catenin and associated transactivation activities, and upregulation of Wnt-targeting genes. In this study, Wnt5A was found to be significantly upregulated in MES-SA/Dx5 and MCF7/ADR2 cells, suggesting an important role for the Wnt5A signaling pathway in cancer drug resistance. Higher cAMP response elements and Tcf/Lef transcription activities were shown in the drug-resistant cancer cells. However, expression of Wnt target genes and CRE activities was downregulated in Wnt5A shRNA stably-transfected MES-SA/Dx5 cells. Cell viability of the drug-resistant cancer cells was also reduced by doxorubicin treatment and Wnt5A shRNA transfection, or by Wnt5A depletion. The in vitro data were supported by immunohistochemical analysis of 24 paired breast cancer biopsies obtained pre- and post-chemotherapeutic treatment. Wnt5A, VEGF and/or ABCB1 were significantly overexpressed after treatment, consistent with clinical chemoresistance. Taken together, the Wnt5A signaling pathway was shown to contribute to regulating the drug-resistance protein ABCB1 and β-catenin-related genes in antagonizing the toxic effects of doxorubicin in the MDR cell lines and in clinical breast cancer samples.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  18. Tan BL, Norhaizan ME, Huynh K, Heshu SR, Yeap SK, Hazilawati H, et al.
    PMID: 26122204 DOI: 10.1186/s12906-015-0730-4
    Brewers' rice, is locally known as temukut, is a mixture of broken rice, rice bran, and rice germ. The current study is an extension of our previous work, which demonstrated that water extract of brewers' rice (WBR) induced apoptosis in human colorectal cancer (HT-29) cells. We also identified that brewers' rice was effective in reducing the tumor incidence and multiplicity in azoxymethane (AOM)-injected colon cancer rats. Our present study was designed to identify whether WBR confers an inhibitory effect via the regulation of upstream components in the Wnt signaling pathway in HT-29 cells. To further determine whether the in vitro mechanisms of action observed in the HT-29 cells inhibit the downstream signaling target of the Wnt/β-catenin pathway, we evaluated the mechanistic action of brewers' rice in regulating the expressions and key protein markers during colon carcinogenesis in male Sprague-Dawley rats.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  19. Emaus MJ, Peeters PH, Bakker MF, Overvad K, Tjønneland A, Olsen A, et al.
    Am J Clin Nutr, 2016 Jan;103(1):168-77.
    PMID: 26607934 DOI: 10.3945/ajcn.114.101436
    BACKGROUND: The recent literature indicates that a high vegetable intake and not a high fruit intake could be associated with decreased steroid hormone receptor-negative breast cancer risk.

    OBJECTIVE: This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk.

    DESIGN: A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors.

    RESULTS: After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk.

    CONCLUSION: This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk.

    Matched MeSH terms: Breast Neoplasms/metabolism
  20. Mahmoodian H, Hamiruce Marhaban M, Abdulrahim R, Rosli R, Saripan I
    Australas Phys Eng Sci Med, 2011 Apr;34(1):41-54.
    PMID: 21327594 DOI: 10.1007/s13246-011-0054-8
    The classification of the cancer tumors based on gene expression profiles has been extensively studied in numbers of studies. A wide variety of cancer datasets have been implemented by the various methods of gene selection and classification to identify the behavior of the genes in tumors and find the relationships between them and outcome of diseases. Interpretability of the model, which is developed by fuzzy rules and linguistic variables in this study, has been rarely considered. In addition, creating a fuzzy classifier with high performance in classification that uses a subset of significant genes which have been selected by different types of gene selection methods is another goal of this study. A new algorithm has been developed to identify the fuzzy rules and significant genes based on fuzzy association rule mining. At first, different subset of genes which have been selected by different methods, were used to generate primary fuzzy classifiers separately and then proposed algorithm was implemented to mix the genes which have been associated in the primary classifiers and generate a new classifier. The results show that fuzzy classifier can classify the tumors with high performance while presenting the relationships between the genes by linguistic variables.
    Matched MeSH terms: Neoplasms/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links