Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Kalbhor MS, Bhowmick S, Alanazi AM, Patil PC, Islam MA
    Biophys Chem, 2021 03;270:106537.
    PMID: 33450550 DOI: 10.1016/j.bpc.2020.106537
    Nipah virus (NiV) infections are highly contagious and can cause severe febrile encephalitis. An outbreak of NiV infection has reported high mortality rates in Southeast Asian countries including Bangladesh, East Timor, Malaysia, Papua New Guinea, Vietnam, Cambodia, Indonesia, Madagascar, Philippines, Thailand and India. Considering the high risk for an epidemic outbreak, the World Health Organization (WHO) declared NiV as an emerging priority pathogen. However, there are no effective therapeutics or any FDA approved drugs available for the treatment of this infection. Among the known nine proteins of NiV, glycoprotein plays an important role in initiating the entry of viruses and attaching to the host cell receptors. Herein, three antiviral databases consisting of 79,892 chemical entities have been computationally screened against NiV glycoprotein (NiV-G). Particularly, multi-step molecular docking followed by extensive molecular binding interactions analyses, binding free energy estimation, in silico pharmacokinetics, synthetic accessibility and toxicity profile evaluations have been carried out for initial identification of potential NiV-G inhibitors. Further, molecular dynamics (MD) simulation has been performed to understand the dynamic properties of NiV-G protein-bound with proposed five inhibitors (G1-G5) and their interactions behavior, and any conformational changes in NiV-G protein during simulations. Moreover, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) based binding free energies (∆G) has been calculated from all MD simulation trajectories to understand the energy contribution of each proposed compound in maintaining and stabilizing the complex binding interactions with NiV-G protein. Proposed compounds showed high negative ∆G values ranging from -166.246 to -226.652 kJ/mol indicating a strong affinity towards the NiV-G protein.
    Matched MeSH terms: Nipah Virus/physiology
  2. Prasad AN, Agans KN, Sivasubramani SK, Geisbert JB, Borisevich V, Mire CE, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S431-S435.
    PMID: 31665351 DOI: 10.1093/infdis/jiz469
    The high case-fatality rates and potential for use as a biological weapon make Nipah virus (NiV) a significant public health concern. Previous studies assessing the pathogenic potential of NiV delivered by the aerosol route in African green monkeys (AGMs) used the Malaysia strain (NiVM), which has caused lower instances of respiratory illness and person-to-person transmission during human outbreaks than the Bangladesh strain (NiVB). Accordingly, we developed a small particle aerosol model of NiVB infection in AGMs. Consistent with other mucosal AGM models of NiVB infection, we achieved uniform lethality and disease pathogenesis reflective of that observed in humans.
    Matched MeSH terms: Nipah Virus/physiology*
  3. Elvert M, Sauerhering L, Maisner A
    J Infect Dis, 2020 05 11;221(Suppl 4):S395-S400.
    PMID: 31665348 DOI: 10.1093/infdis/jiz455
    During the Nipah virus (NiV) outbreak in Malaysia, pigs and humans were infected. While pigs generally developed severe respiratory disease due to effective virus replication and associated inflammation processes in porcine airways, respiratory symptoms in humans were rare and less severe. To elucidate the reasons for the species-specific differences in NiV airway infections, we compared the cytokine responses as a first reaction to NiV in primary porcine and human bronchial epithelial cells (PBEpC and HBEpC, respectively). In both cell types, NiV infection resulted in the expression of type III interferons (IFN-λ). Upon infection with similar virus doses, viral RNA load and IFN expression were substantially higher in HBEpC. Even if PBEpC expressed the same viral RNA amounts as NiV-infected HBEpC, the porcine cells showed reduced IFN- and IFN-dependent antiviral gene expression. Despite this inherently limited IFN response, the expression of proinflammatory cytokines (IL-6, IL-8) in NiV-infected PBEpC was not decreased. The downregulation of antiviral activity in the presence of a functional proinflammatory cytokine response might be one of the species-specific factors contributing to efficient virus replication and acute inflammation in the lungs of pigs infected with the Malaysian NiV strain.
    Matched MeSH terms: Nipah Virus/physiology*
  4. Lee JH, Hammoud DA, Cong Y, Huzella LM, Castro MA, Solomon J, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S419-S430.
    PMID: 31687756 DOI: 10.1093/infdis/jiz502
    Nipah virus (NiV) is an emerging virus associated with outbreaks of acute respiratory disease and encephalitis. To develop a neurological model for NiV infection, we exposed 6 adult African green monkeys to a large-particle (approximately 12 μm) aerosol containing NiV (Malaysian isolate). Brain magnetic resonance images were obtained at baseline, every 3 days after exposure for 2 weeks, and then weekly until week 8 after exposure. Four of six animals showed abnormalities reminiscent of human disease in brain magnetic resonance images. Abnormalities ranged from cytotoxic edema to vasogenic edema. The majority of lesions were small infarcts, and a few showed inflammatory or encephalitic changes. Resolution or decreased size in some lesions resembled findings reported in patients with NiV infection. Histological lesions in the brain included multifocal areas of encephalomalacia, corresponding to known ischemic foci. In other regions of the brain there was evidence of vasculitis, with perivascular infiltrates of inflammatory cells and rare intravascular fibrin thrombi. This animal model will help us better understand the acute neurological features of NiV infection and develop therapeutic approaches for managing disease caused by NiV infection.
    Matched MeSH terms: Nipah Virus/physiology*
  5. Li K, Yan S, Wang N, He W, Guan H, He C, et al.
    Transbound Emerg Dis, 2020 Jan;67(1):121-132.
    PMID: 31408582 DOI: 10.1111/tbed.13330
    Since its first emergence in 1998 in Malaysia, Nipah virus (NiV) has become a great threat to domestic animals and humans. Sporadic outbreaks associated with human-to-human transmission caused hundreds of human fatalities. Here, we collected all available NiV sequences and combined phylogenetics, molecular selection, structural biology and receptor analysis to study the emergence and adaptive evolution of NiV. NiV can be divided into two main lineages including the Bangladesh and Malaysia lineages. We formly confirmed a significant association with geography which is probably the result of long-term evolution of NiV in local bat population. The two NiV lineages differ in many amino acids; one change in the fusion protein might be involved in its activation via binding to the G protein. We also identified adaptive and positively selected sites in many viral proteins. In the receptor-binding G protein, we found that sites 384, 386 and especially 498 of G protein might modulate receptor-binding affinity and thus contribute to the host jump from bats to humans via the adaption to bind the human ephrin-B2 receptor. We also found that site 1645 in the connector domain of L was positive selected and involved in adaptive evolution; this site might add methyl groups to the cap structure present at the 5'-end of the RNA and thus modulate its activity. This study provides insight to assist the design of early detection methods for NiV to assess its epidemic potential in humans.
    Matched MeSH terms: Nipah Virus/physiology
  6. Aditi, Shariff M
    Epidemiol Infect, 2019 01;147:e95.
    PMID: 30869046 DOI: 10.1017/S0950268819000086
    Nipah virus (NiV) is an emerging bat-borne pathogen. It was first identified 20 years ago in Malaysia and has since caused outbreaks in other parts of South and Southeast Asia. It causes severe neurological and respiratory disease which is highly lethal. It is highly infectious and spreads in the community through infected animals or other infected people. Different strains of the virus show differing clinical and epidemiological features. Rapid diagnosis and implementation of infection control measures are essential to contain outbreaks. A number of serological and molecular diagnostic techniques have been developed for diagnosis and surveillance. Difficulties in diagnosis and management arise when a new area is affected. The high mortality associated with infection and the possibility of spread to new areas has underscored the need for effective management and control. However, no effective treatment or prophylaxis is readily available, though several approaches show promise. Given the common chains of transmission from bats to humans, a One Health approach is necessary for the prevention and control of NiV infection.
    Matched MeSH terms: Nipah Virus/physiology*
  7. Yu J, Lv X, Yang Z, Gao S, Li C, Cai Y, et al.
    Viruses, 2018 10 19;10(10).
    PMID: 30347642 DOI: 10.3390/v10100572
    Nipah disease is a highly fatal zoonosis which is caused by the Nipah virus. The Nipah virus is a BSL-4 virus with fruit bats being its natural host. It is mainly prevalent in Southeast Asia. The virus was first discovered in 1997 in Negeri Sembilan, Malaysia. Currently, it is mainly harmful to pigs and humans with a high mortality rate. This study describes the route of transmission of the Nipah virus in different countries and analyzes the possibility of the primary disease being in China and the method of its transmission to China. The risk factors are analyzed for different susceptible populations to Nipah disease. The aim is to improve people's risk awareness and prevention and control of the disease and reduce its risk of occurring and spreading in China.
    Matched MeSH terms: Nipah Virus/physiology
  8. Lam CW, AbuBakar S, Chang LY
    J Virol Methods, 2017 05;243:1-9.
    PMID: 28082163 DOI: 10.1016/j.jviromet.2017.01.004
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus with unusual broad host tropism and is designated as a Category C pathogen by the U.S. National Institute of Allergy and Infectious Diseases. NiV infection is initiated after binding of the viral G glycoprotein to the host cell receptor. The aim of this study was to map the NiV G glycoprotein cell binding domain using a phage display system. The NiV G extracellular domain was truncated and displayed as attachment proteins on M13 phage g3p minor coat protein. The binding efficiency of recombinant phages displaying different regions of NiV G to mammalian cells was evaluated. Results showed that regions of NiV G consisting of amino acids 396-602 (recombinant phage G4) and 498-602 (recombinant phage G5) demonstrated the highest binding to both Vero (5.5×103 cfu/ml and 5.6×103 cfu/ml) and THP-1 cells (3.5×103 cfu/ml and 2.9×103 cfu/ml). However, the binding of both of these recombinant phages to THP-1 cells was significantly lower than to Vero cells, and this could be due to the lack of primary host cell receptor expression on THP-1 cells. Furthermore, the binding between these two recombinant phages was competitive suggesting that there was a common host cell attachment site. This study employed an approach that is suitable for use in a biosafety level 2 containment laboratory without the need to use live virus to show that NiV G amino acids 498-602 play an important role for attachment to host cells.
    Matched MeSH terms: Nipah Virus/physiology*
  9. Baseler L, Scott DP, Saturday G, Horne E, Rosenke R, Thomas T, et al.
    PLoS Negl Trop Dis, 2016 Nov;10(11):e0005120.
    PMID: 27812087 DOI: 10.1371/journal.pntd.0005120
    BACKGROUND: Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B).

    METHODOLOGY/PRINCIPAL FINDINGS: Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi.

    CONCLUSIONS/SIGNIFICANCE: Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

    Matched MeSH terms: Nipah Virus/physiology*
  10. Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA
    PLoS Negl Trop Dis, 2016 06;10(6):e0004775.
    PMID: 27341030 DOI: 10.1371/journal.pntd.0004775
    Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
    Matched MeSH terms: Nipah Virus/physiology*
  11. Escaffre O, Borisevich V, Vergara LA, Wen JW, Long D, Rockx B
    J Gen Virol, 2016 05;97(5):1077-1086.
    PMID: 26932515 DOI: 10.1099/jgv.0.000441
    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission.
    Matched MeSH terms: Nipah Virus/physiology*
  12. Dietzel E, Kolesnikova L, Sawatsky B, Heiner A, Weis M, Kobinger GP, et al.
    J Virol, 2016 Mar;90(5):2514-22.
    PMID: 26676785 DOI: 10.1128/JVI.02920-15
    Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles.
    Matched MeSH terms: Nipah Virus/physiology*
  13. Baseler L, de Wit E, Scott DP, Munster VJ, Feldmann H
    Vet Pathol, 2015 Jan;52(1):38-45.
    PMID: 25352203 DOI: 10.1177/0300985814556189
    Nipah virus is a paramyxovirus in the genus Henipavirus, which has caused outbreaks in humans in Malaysia, India, Singapore, and Bangladesh. Whereas the human cases in Malaysia were characterized mainly by neurological symptoms and a case fatality rate of ∼40%, cases in Bangladesh also exhibited respiratory disease and had a case fatality rate of ∼70%. Here, we compared the histopathologic changes in the respiratory tract of Syrian hamsters, a well-established small animal disease model for Nipah virus, inoculated oronasally with Nipah virus isolates from human cases in Malaysia and Bangladesh. The Nipah virus isolate from Bangladesh caused slightly more severe rhinitis and bronchointerstitial pneumonia 2 days after inoculation in Syrian hamsters. By day 4, differences in lesion severity could no longer be detected. Immunohistochemistry demonstrated Nipah virus antigen in the nasal cavity and pulmonary lesions; the amount of Nipah virus antigen present correlated with lesion severity. Immunohistochemistry indicated that both Nipah virus isolates exhibited endotheliotropism in small- and medium-caliber arteries and arterioles, but not in veins, in the lung. This correlated with the location of ephrin B2, the main receptor for Nipah virus, in the vasculature. In conclusion, Nipah virus isolates from outbreaks in Malaysia and Bangladesh caused a similar type and severity of respiratory tract lesions in Syrian hamsters, suggesting that the differences in human disease reported in the outbreaks in Malaysia and Bangladesh are unlikely to have been caused by intrinsic differences in these 2 virus isolates.
    Matched MeSH terms: Nipah Virus/physiology*
  14. Sun W, McCrory TS, Khaw WY, Petzing S, Myers T, Schmitt AP
    J Virol, 2014 Nov;88(22):13099-110.
    PMID: 25210190 DOI: 10.1128/JVI.02103-14
    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections.
    Matched MeSH terms: Nipah Virus/physiology*
  15. Yoneda M
    Uirusu, 2014;64(1):105-12.
    PMID: 25765986 DOI: 10.2222/jsv.64.105
    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans, and incurred a high fatality rate in humans. We established a system that enabled the rescue of replicating NiVs from a cloned DNA. Using the system, we analyzed the functions of accessory proteins in infected cells and the implications in in vivo pathogenicity. Further, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins, which appeared to be an appropriate to NiV vaccine candidate for use in humans.
    Matched MeSH terms: Nipah Virus/physiology
  16. Luby SP
    Antiviral Res, 2013 Oct;100(1):38-43.
    PMID: 23911335 DOI: 10.1016/j.antiviral.2013.07.011
    Nipah virus, a paramyxovirus whose wildlife reservoir is Pteropus bats, was first discovered in a large outbreak of acute encephalitis in Malaysia in 1998 among persons who had contact with sick pigs. Apparently, one or more pigs was infected from bats, and the virus then spread efficiently from pig to pig, then from pigs to people. Nipah virus outbreaks have been recognized nearly every year in Bangladesh since 2001 and occasionally in neighboring India. Outbreaks in Bangladesh and India have been characterized by frequent person-to-person transmission and the death of over 70% of infected people. Characteristics of Nipah virus that increase its risk of becoming a global pandemic include: humans are already susceptible; many strains are capable of limited person-to-person transmission; as an RNA virus, it has an exceptionally high rate of mutation: and that if a human-adapted strain were to infect communities in South Asia, high population densities and global interconnectedness would rapidly spread the infection. Appropriate steps to estimate and manage this risk include studies to explore the molecular and genetic basis of respiratory transmission of henipaviruses, improved surveillance for human infections, support from high-income countries to reduce the risk of person-to-person transmission of infectious agents in low-income health care settings, and consideration of vaccination in communities at ongoing risk of exposure to the secretions and excretions of Pteropus bats.
    Matched MeSH terms: Nipah Virus/physiology
  17. Rahman SA, Hassan L, Epstein JH, Mamat ZC, Yatim AM, Hassan SS, et al.
    Emerg Infect Dis, 2013 Jan;19(1):51-60.
    PMID: 23261015 DOI: 10.3201/eid1901.120221
    We conducted cross-sectional and longitudinal studies to determine the distribution of and risk factors for seropositivity to Nipah virus (NiV) among Pteropus vampyrus and P. hypomelanus bats in Peninsular Malaysia. Neutralizing antibodies against NiV were detected at most locations surveyed. We observed a consistently higher NiV risk (odds ratio 3.9) and seroprevalence (32.8%) for P. vampyrus than P. hypomelanus (11.1%) bats. A 3-year longitudinal study of P. hypomelanus bats indicated nonseasonal temporal variation in seroprevalence, evidence for viral circulation within the study period, and an overall NiV seroprevalence of 9.8%. The seroprevalence fluctuated over the study duration between 1% and 20% and generally decreased during 2004-2006. Adult bats, particularly pregnant, with dependent pup and lactating bats, had a higher prevalence of NiV antibodies than juveniles. Antibodies in juveniles 6 months-2 years of age suggested viral circulation within the study period.
    Matched MeSH terms: Nipah Virus/physiology*
  18. Clayton BA, Middleton D, Bergfeld J, Haining J, Arkinstall R, Wang L, et al.
    Emerg Infect Dis, 2012 Dec;18(12):1983-93.
    PMID: 23171621 DOI: 10.3201/eid1812.120875
    Human infections with Nipah virus in Malaysia and Bangladesh are associated with markedly different patterns of transmission and pathogenicity. To compare the 2 strains, we conducted an in vivo study in which 2 groups of ferrets were oronasally exposed to either the Malaysia or Bangladesh strain of Nipah virus. Viral shedding and tissue tropism were compared between the 2 groups. Over the course of infection, significantly higher levels of viral RNA were recovered from oral secretions of ferrets infected with the Bangladesh strain. Higher levels of oral shedding of the Bangladesh strain of Nipah virus might be a key factor in onward transmission in outbreaks among humans.
    Matched MeSH terms: Nipah Virus/physiology*
  19. Wong KT, Tan CT
    PMID: 22427144 DOI: 10.1007/82_2012_205
    The clinicopathological features of human Nipah virus and Hendra virus infections appear to be similar. The clinical manifestations may be mild, but if severe, includes acute encephalitic and pulmonary syndromes with a high mortality. The pathological features in human acute henipavirus infections comprise vasculopathy (vasculitis, endothelial multinucleated syncytia, thrombosis), microinfarcts and parenchymal cell infection in the central nervous system, lung, kidney and other major organs. Viral inclusions, antigens, nucleocapsids and RNA are readily demonstrated in blood vessel wall and numerous types of parenchymal cells. Relapsing henipavirus encephalitis is a rare complication reported in less than 10% of survivors of the acute infection and appears to be distinct from the acute encephalitic syndrome. Pathological evidence suggests viral recrudescence confined to the central nervous system as the cause.
    Matched MeSH terms: Nipah Virus/physiology
  20. Luby SP, Gurley ES, Hossain MJ
    Clin Infect Dis, 2009 Dec 1;49(11):1743-8.
    PMID: 19886791 DOI: 10.1086/647951
    Nipah virus (NiV) is a paramyxovirus whose reservoir host is fruit bats of the genus Pteropus. Occasionally the virus is introduced into human populations and causes severe illness characterized by encephalitis or respiratory disease. The first outbreak of NiV was recognized in Malaysia, but 8 outbreaks have been reported from Bangladesh since 2001. The primary pathways of transmission from bats to people in Bangladesh are through contamination of raw date palm sap by bats with subsequent consumption by humans and through infection of domestic animals (cattle, pigs, and goats), presumably from consumption of food contaminated with bat saliva or urine with subsequent transmission to people. Approximately one-half of recognized Nipah case patients in Bangladesh developed their disease following person-to-person transmission of the virus. Efforts to prevent transmission should focus on decreasing bat access to date palm sap and reducing family members' and friends' exposure to infected patients' saliva.
    Matched MeSH terms: Nipah Virus/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links