Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Yazici Z, Gumusova S, Tamer C, Muftuoglu B, Ozan E, Arslan S, et al.
    Trop Biomed, 2019 Sep 01;36(3):803-809.
    PMID: 33597501
    Bovine parainfluenza 3 virus (BPI3V)is one of the most important respiratory pathogens and a leading cause of serious respiratory illnesses in cattle, both independent of and in connection with other pathogens involved in the bovine respiratory disease complex (BRDC). In this study, we aimed to identify the historical circulation of genotype C bovine BPI3V (BPI3Vc) in Turkey using the archival serum samples of domestic ruminants that had been collected from six provinces of northern Anatolia in Turkey between 2009-2010. A total of 896 sera from cattle (n=442), sheep (n=330), and goats (n=124) were randomly selected and screened with a virus neutralization test in order to detect antibodies for BPI3Vc. The overall seropositivity rate was 21.09%, with seropositivity rates for cattle, sheep, and goats of 21.04%, 20.00%, and 24.19%, respectively. Neutralizing antibody titers for selected samples ranged between 1/4 to 1/512. This study represents the first serological study conducted using the first BPI3V isolate of Turkey.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology
  2. Ozawa Y, Ong BL, An SH
    Rev. - Off. Int. Epizoot., 2001 Aug;20(2):605-13.
    PMID: 11548530
    Traceback systems in most countries of Asia are not well developed, as indicated by responses to a questionnaire by veterinary officials in thirteen countries. Marking of animals for traceback is practised only in a limited number of countries in specific areas or zones and for specific purposes only. In Malaysia, traceback has been undertaken by marking farm code tattoos on pigs. This enables the identification of the farm of origin of pigs found to be infected by Nipah virus in sero-surveillance programmes. The origin of the foot and mouth disease (FMD) virus that surfaced in the Republic of Korea in March 2000 was investigated through several epidemiological studies of suspected sources of contamination such as imported hay, yellow sand, milk collection trucks and feed delivery trucks. None of these studies gave results that indicated the origin of the FMD virus. The origin of the FMD virus that was recorded in Japan in March 2000 was also investigated in epidemiological studies; in this case, imported wheat straw was incriminated as the most likely source of infection. Comparative studies of the pathogenicities of FMD (type O) viruses isolated in Taipei China, the Republic of Korea and Japan, suggest that these viruses might have originated as vaccine strains used in a third country.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology
  3. Chew MH, Arguin PM, Shay DK, Goh KT, Rollin PE, Shieh WJ, et al.
    J Infect Dis, 2000 May;181(5):1760-3.
    PMID: 10823780
    During 10-19 March 1999, 11 workers in 1 of 2 Singaporean abattoirs developed Nipah-virus associated encephalitis or pneumonia, resulting in 1 fatality. A case-control study was conducted to determine occupational risk factors for infection. Case patients were abattoir A workers who had anti-Nipah IgM antibodies; control subjects were randomly selected abattoir A workers who tested negative for anti-Nipah IgM. All 13 case patients versus 26 (63%) of 41 control subjects reported contact with live pigs (P=.01). Swine importation from Malaysian states concurrently experiencing a Nipah virus outbreak was banned on 3 March 1999; on 19 March 1999, importation of Malaysian pigs was banned, and abattoirs were closed. No unusual illnesses among pigs processed during February-March were reported. Contact with live pigs appeared to be the most important risk factor for human Nipah virus infection. Direct contact with live, potentially infected pigs should be minimized to prevent transmission of this potentially fatal zoonosis to humans.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  4. Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, Ksiazek TG, et al.
    J Infect Dis, 2000 May;181(5):1755-9.
    PMID: 10823779
    An outbreak of encephalitis affecting 265 patients (105 fatally) occurred during 1998-1999 in Malaysia and was linked to a new paramyxovirus, Nipah, that infected pigs, humans, dogs, and cats. Most patients were pig farmers. Clinically undetected Nipah infection was noted in 10 (6%) of 166 community-farm controls (persons from farms without reported encephalitis patients) and 20 (11%) of 178 case-farm controls (persons from farms with encephalitis patients). Case patients (persons with Nipah infection) were more likely than community-farm controls to report increased numbers of sick/dying pigs on the farm (59% vs. 24%, P=.001) and were more likely than case-farm controls to perform activities requiring direct contact with pigs (86% vs. 50%, P=.005). Only 8% of case patients reported no contact with pigs. The outbreak stopped after pigs in the affected areas were slaughtered and buried. Direct, close contact with pigs was the primary source of human Nipah infection, but other sources, such as infected dogs and cats, cannot be excluded.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  5. Bellini WJ
    Int J Epidemiol, 2001 Oct;30(5):1020-1.
    PMID: 11689514
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  6. Nor'e SS, Sam IC, Mohamad Fakri EF, Hooi PS, Nathan AM, de Bruyne JA, et al.
    Trop Biomed, 2014 Sep;31(3):562-6.
    PMID: 25382484 MyJurnal
    Human metapneumovirus (HMPV) is a recently discovered cause of viral respiratory infections. We describe clinical and molecular epidemiology of HMPV cases diagnosed in children with respiratory infection at University of Malaya Medical Centre, Kuala Lumpur, Malaysia. The prevalence rate of HMPV between 2010 and 2012 was 1.1%, and HMPV contributed 6.5% of confirmed viral respiratory infections. The HMPV patients had a median age of 1.6 years, and a median hospital admission of 4 days. The most common clinical presentations were fever, rhinitis, pneumonia, vomiting/diarrhoea, and bronchiolitis. Based on the partial sequences of F fusion gene from 26 HMPV strains, 14 (54%) were subgenotype A2b, which was predominant in 2010; 11 (42%) were subgenotype B1, which was predominant in 2012; and 1 (4%) was subgenotype A2a. Knowledge of the circulating subgenotypes in Malaysia, and the displacement of predominant subgenotypes within 3 years, is useful data for future vaccine planning.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology
  7. Lim CC, Sitoh YY, Hui F, Lee KE, Ang BS, Lim E, et al.
    AJNR Am J Neuroradiol, 2000 Mar;21(3):455-61.
    PMID: 10730635
    BACKGROUND AND PURPOSE: An epidemic of suspected Japanese encephalitis occurred in Malaysia in 1998-1999 among pig farmers. In neighboring Singapore, an outbreak occurred among pig slaughterhouse workers. It was subsequently established that the causative agent in the outbreak was not the Japanese encephalitis virus but a previously unknown Hendra-like paramyxovirus named Nipah virus.

    METHODS: The brain MR images of eight patients with Nipah virus infection were reviewed. All patients tested negative for acute Japanese encephalitis virus. Seven patients had contrast-enhanced studies and six had diffusion-weighted examinations.

    RESULTS: All patients had multiple small bilateral foci of T2 prolongation within the subcortical and deep white matter. The periventricular region and corpus callosum were also involved. In addition to white matter disease, five patients had cortical lesions, three had brain stem involvement, and a single thalamic lesion was detected in one patient. All lesions were less than 1 cm in maximum diameter. In five patients, diffusion-weighted images showed increased signal. Four patients had leptomeningeal enhancement and four had enhancement of parenchymal lesions.

    CONCLUSION: The brain MR findings in patients infected with the newly discovered Nipah paramyxovirus are different from those of patients with Japanese encephalitis. In a zoonotic epidemic, this striking difference in the appearance and distribution of lesions is useful in differentiating these diseases. Diffusion-weighted imaging was advantageous in increasing lesion conspicuity.

    Matched MeSH terms: Paramyxoviridae Infections/epidemiology
  8. Chua KB
    J Clin Virol, 2003 Apr;26(3):265-75.
    PMID: 12637075
    Nipah virus, a novel paramyxovirus, closely related to Hendra virus emerged in northern part of Peninsular Malaysia in 1998. The virus caused an outbreak of severe febrile encephalitis in humans with a high mortality rate, whereas, in pigs, encephalitis and respiratory diseases but with a relatively low mortality rate. The outbreak subsequently spread to various regions of the country and Singapore in the south due to the movement of infected pigs. Nipah virus caused systemic infections in humans, pigs and other mammals. Histopathological and radiological findings were characteristic of the disease. Fruitbats of Pteropid species were identified as the natural reservoir hosts. Evidence suggested that climatic and anthropogenic driven ecological changes coupled with the location of piggeries in orchard and the design of pigsties allowed the spill-over of this novel paramyxovirus from its reservoir host into the domestic pigs and ultimately to humans and other animals.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  9. Lam SK, Chua KB
    Clin Infect Dis, 2002 May 1;34 Suppl 2:S48-51.
    PMID: 11938496 DOI: 10.1086/338818
    Emerging infectious diseases involving zoonosis have become important global health problems. The 1998 outbreak of severe febrile encephalitis among pig farmers in Malaysia caused by a newly emergent paramyxovirus, Nipah virus, is a good example. This disease has the potential to spread to other countries through infected animals and can cause considerable economic loss. The clinical presentation includes segmental myoclonus, areflexia, hypertension, and tachycardia, and histologic evidence includes endothelial damage and vasculitis of the brain and other major organs. Magnetic resonance imaging has demonstrated the presence of discrete high-signal-intensity lesions disseminated throughout the brain. Nipah virus causes syncytial formation in Vero cells and is antigenically related to Hendra virus. The Island flying fox (Pteropus hypomelanus; the fruit bat) is a likely reservoir of this virus. The outbreak in Malaysia was controlled through the culling of >1 million pigs.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  10. Enserink M
    Science, 2000 Jul 28;289(5479):518-9.
    PMID: 10939954 DOI: 10.1126/science.289.5479.518
    Scientists are a step closer to unraveling a medical mystery that killed 105 people in Malaysia last year and destroyed the country's pig industry. The Nipah virus, which caused the disease, most likely originated in a native fruit bat species, Malaysian researchers reported here at a meeting last week. They say the findings will help Malaysian health authorities prevent future outbreaks of the Nipah virus. Others see the case as an argument for expanding research into infections that can leap the boundary between animals and humans.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  11. Enserink M
    Science, 1999 Apr 16;284(5413):407, 409-10.
    PMID: 10232977 DOI: 10.1126/science.284.5413.407
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  12. Farrar JJ
    Lancet, 1999 Oct 9;354(9186):1222-3.
    PMID: 10520625
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  13. Gibbs WW
    Sci. Am., 1999 Aug;281(2):80-7.
    PMID: 10443039
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology
  14. Fieldhouse JK, Toh TH, Lim WH, Ting J, Ha SJ, Hii KC, et al.
    PLoS One, 2018;13(8):e0202147.
    PMID: 30110367 DOI: 10.1371/journal.pone.0202147
    BACKGROUND: Respiratory syncytial virus (RSV) and parainfluenza virus (PIV) are frequent causes of pneumonia and death among children at Sibu and Kapit Hospitals in Sarawak, Malaysia.

    OBJECTIVES: To determine the prevalence and risk factors for RSV subtypes A and B and PIV types 1-4 among patients hospitalized with pneumonia.

    METHODS: In a cross-sectional, pilot study nasopharyngeal swabs were studied with real-time reverse transcription polymerase chain reaction assays. Concurrently, we helped Sibu and Kapit Hospitals adapt their first molecular diagnostics for RSV and PIV.

    RESULTS: Of 129 specimens collected (June to July 2017), 39 tested positive for RSV-A (30.2%), two were positive for RSV B (1.6%), one was positive for PIV-3 (0.8%) and one was positive for PIV-4 (0.8%). No samples were positive for PIV-1 or PIV-2. Of the 39 RSV-A positive specimens, 46.2% were collected from children under one year of age and only 5.1% were from patients over the age of 18. A multivariable analysis found the odds of children <1 year of age testing positive for RSV-A were 32.7 (95% CI: 3.9, 276.2) times larger than >18 years of age, and the odds of patients hospitalized at Kapit Hospital testing positive for RSV-A were 3.2 (95% CI: 1.3, 7.8) times larger than patients hospitalized at Sibu Hospital.

    CONCLUSION: This study found an unusually high prevalence of RSV-A among pneumonia patients admitted to the two hospitals. Subsequently, Sibu Hospital adapted the molecular assays with the goal of providing more directed care for such pneumonia patients.

    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  15. Lam TT, Tang JW, Lai FY, Zaraket H, Dbaibo G, Bialasiewicz S, et al.
    J Infect, 2019 10;79(4):373-382.
    PMID: 31323249 DOI: 10.1016/j.jinf.2019.07.008
    OBJECTIVES: To improve our understanding of the global epidemiology of common respiratory viruses by analysing their contemporaneous incidence at multiple sites.

    METHODS: 2010-2015 incidence data for influenza A (IAV), influenza B (IBV), respiratory syncytial (RSV) and parainfluenza (PIV) virus infections were collected from 18 sites (14 countries), consisting of local (n = 6), regional (n = 9) and national (n = 3) laboratories using molecular diagnostic methods. Each site submitted monthly virus incidence data, together with details of their patient populations tested and diagnostic assays used.

    RESULTS: For the Northern Hemisphere temperate countries, the IAV, IBV and RSV incidence peaks were 2-6 months out of phase with those in the Southern Hemisphere, with IAV having a sharp out-of-phase difference at 6 months, whereas IBV and RSV showed more variable out-of-phase differences of 2-6 months. The tropical sites Singapore and Kuala Lumpur showed fluctuating incidence of these viruses throughout the year, whereas subtropical sites such as Hong Kong, Brisbane and Sydney showed distinctive biannual peaks for IAV but not for RSV and PIV.

    CONCLUSIONS: There was a notable pattern of synchrony of IAV, IBV and RSV incidence peaks globally, and within countries with multiple sampling sites (Canada, UK, Australia), despite significant distances between these sites.

    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  16. Ivan A, Indrei LL
    Rev Med Chir Soc Med Nat Iasi, 2000 Apr-Jun;104(2):51-5.
    PMID: 12089991
    In the interval 1994-1999, in Australia, Malaysia and Singapore, epizootic and epidemiological episodes of meningoencephalitis and severe acute respiratory syndromes were reported. Highly lethal in horses, swine and humans, the episodes were proved to be caused by the "new" viruses Hendra (HeV) and Nipah (NiV). At the same time three "new" viral agents have been isolated: Lyssavirus, Menanglevirus and Tupaia paramyxovirus. The intense contemporary circulation of people, animals and food products together with changes in human ecosystem favor new relations between humans and the "natural reservoirs" of biologic agents with a pathogenic potential for domestic and peridomestic animals and humans.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology
  17. Nichol ST, Arikawa J, Kawaoka Y
    Proc Natl Acad Sci U S A, 2000 Nov 07;97(23):12411-2.
    PMID: 11035785
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
  18. Premalatha GD, Lye MS, Ariokasamy J, Parashar UD, Rahmat R, Lee BY, et al.
    PMID: 11127331
    Between September 1998 and May 1999, 265 cases of encephalitis were reported from among those involved in pig rearing. A few cases were also reported among abattoir workers. This raised questions of the risk of transmission among those who handled raw pork. A serosurvey was conducted among pork sellers in Seremban town, which is about 20 km from one of the pig rearing areas which had reported cases of encephalitis. It was found that out of the 28 pork sellers tested, only one tested positive for Nipah virus antibodies and that this pork seller also worked in an abattoir in the same district, removing the urinary bladders from slaughtered pigs. Based on these findings, it was concluded that the risk of transmission of the virus from handling raw pork appeared to be low.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology
  19. Ali R, Mounts AW, Parashar UD, Sahani M, Lye MS, Isa MM, et al.
    Emerg Infect Dis, 2001 Jul-Aug;7(4):759-61.
    PMID: 11592256
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology
  20. Lam SK
    Antiviral Res, 2003 Jan;57(1-2):113-9.
    PMID: 12615307
    Nipah virus, a newly emerging deadly paramyxovirus isolated during a large outbreak of viral encephalitis in Malaysia, has many of the physical attributes to serve as a potential agent of bioterrorism. The outbreak caused widespread panic and fear because of its high mortality and the inability to control the disease initially. There were considerable social disruptions and tremendous economic loss to an important pig-rearing industry. This highly virulent virus, believed to be introduced into pig farms by fruit bats, spread easily among pigs and was transmitted to humans who came into close contact with infected animals. From pigs, the virus was also transmitted to other animals such as dogs, cats, and horses. The Nipah virus has the potential to be considered an agent of bioterrorism.
    Matched MeSH terms: Paramyxoviridae Infections/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links