Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Mohd-Qawiem F, Nawal-Amani AR, Faranieyza-Afiqah F, Yasmin AR, Arshad SS, Norfitriah MS, et al.
    Open Vet J, 2022;12(6):868-876.
    PMID: 36650879 DOI: 10.5455/OVJ.2022.v12.i6.14
    Paramyxoviruses have been shown to infect a wide range of hosts, including rodents, and humans. Several novel murine paramyxoviruses have been discovered in the last several decades. Although these viruses are unclassified, they are recognized as Beilong virus, Mojiang virus (MojV), and Tailam virus in rats, Jeilongvirus, Nariva, Paju Apodemus paramyxovirus-1 and -2 in mice, and Pentlands paramyxovirus-1, -2, and -3 in squirrels. These paramyxoviruses were reported mainly in China and a few other countries like Australia, the Republic of Korea, Trinidad, and France. In June 2012, it becomes a great concern in China whereby, three miners were reported dead potentially caused by a novel zoonotic MojV, a henipa-like virus isolated from tissue samples of rats from the same cave. Rats are considered to be natural hosts for the MojV from the literature research. The classified paramyxovirus, Sendai virus in rodents is also reviewed. Paramyxoviruses infection in rodents leads to respiratory distress such as necrotizing rhinitis, tracheitis, bronchiolitis, and interstitial pneumonia. Infections caused by paramyxoviruses often spread between species, manifesting disease in spillover hosts, including humans. This review focuses on the paramyxoviruses in rodents, including the epidemiological distributions, transmission and pathogenesis, clinical manifestations, diagnostic methods, and control and prevention of paramyxoviruses infection to provide a better understanding of these highly mutating viruses.
    Matched MeSH terms: Paramyxovirinae*
  2. Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV
    Trop Med Infect Dis, 2021 Feb 14;6(1).
    PMID: 33672796 DOI: 10.3390/tropicalmed6010024
    Nipah virus (NiV) is a zoonotic paramyxovirus of the Henipavirus genus first identified in Malaysia in 1998. Henipaviruses have bat reservoir hosts and have been isolated from fruit bats found across Oceania, Asia, and Africa. Bat-to-human transmission is thought to be the primary mode of human NiV infection, although multiple intermediate hosts are described. Human infections with NiV were originally described as a syndrome of fever and rapid neurological decline following contact with swine. More recent outbreaks describe a syndrome with prominent respiratory symptoms and human-to-human transmission. Nearly annual outbreaks have been described since 1998 with case fatality rates reaching greater than 90%. The ubiquitous nature of the reservoir host, increasing deforestation, multiple mode of transmission, high case fatality rate, and lack of effective therapy or vaccines make NiV's pandemic potential increasingly significant. Here we review the epidemiology and microbiology of NiV as well as the therapeutic agents and vaccines in development.
    Matched MeSH terms: Paramyxovirinae
  3. Pauly M, Pir JB, Loesch C, Sausy A, Snoeck CJ, Hübschen JM, et al.
    Appl Environ Microbiol, 2017 09 15;83(18).
    PMID: 28710271 DOI: 10.1128/AEM.01326-17
    Several infectious disease outbreaks with high mortality in humans have been attributed to viruses that are thought to have evolved from bat viruses. In this study from Luxembourg, the genetic diversity and epidemiology of paramyxoviruses and coronaviruses shed by the bat species Rhinolophus ferrumequinum and Myotis emarginatus were evaluated. Feces collection (n = 624) was performed longitudinally in a mixed-species colony in 2015 and 2016. In addition, feces (n = 254) were collected cross-sectionally from six Myotis emarginatus colonies in 2016. By use of degenerate primers in a nested format, overall prevalences of 1.1% (10/878) and 4.9% (43/878) were determined for paramyxoviruses and coronaviruses. Sequences of the partial RNA-dependent RNA polymerase and spike glycoprotein genes of coronaviruses, as well as sequences of the partial L gene of paramyxoviruses, were obtained. Novel paramyxovirus and Alphacoronavirus strains were identified in different Myotis emarginatus colonies, and severe acute respiratory syndrome (SARS)-related Betacoronavirus strains were shed by Rhinolophus ferrumequinum Logistic regression revealed that the level of Alphacoronavirus shedding was highest in July (odds ratio, 2.8; P < 0.01), probably due to periparturient stress. Phylogenetic analyses point to close virus-host coevolution, and the high genetic similarity of the study strains suggests that the Myotis emarginatus colonies in Luxembourg are socially connected. Most interestingly, we show that bats also host Betacoronavirus1 strains. The high similarity of the spike gene sequences of these viruses with mammalian Betacoronavirus 1 strains may be of concern. Both the SARS-related and Betacoronavirus 1 strains detected in bats in Luxembourg may cross the species barrier after a host adaptation process.IMPORTANCE Bats are a natural reservoir of a number of zoonotic pathogens. Several severe outbreaks in humans (e.g., a Nipah virus outbreak in Malaysia in 1998, and the almost global spread of severe acute respiratory syndrome in 2003) have been caused by bat-borne viruses that were transmitted to humans mostly after virus adaptation (e.g., in intermediate animal hosts). Despite the indigenousness of bat species that host viruses with suspected zoonotic potential and despite the zoonotic transmission of European bat 1 lyssavirus in Luxembourg, knowledge about the diversity and epidemiology of bat viruses remains limited in this country. Moreover, in contrast to other European countries, bat viruses are currently not included in the national surveillance activities of this land-locked country. We suggest that this gap in disease surveillance should be addressed, since we show here that synanthropic bats host viruses that may be able to cross the species barrier.
    Matched MeSH terms: Paramyxovirinae/classification; Paramyxovirinae/genetics; Paramyxovirinae/isolation & purification*
  4. Sherrini BA, Chong TT
    Med J Malaysia, 2014 Aug;69 Suppl A:103-11.
    PMID: 25417957
    Between September 1998 to May 1999, Malaysia and Singapore were hit by an outbreak of fatal encephalitis caused by a novel virus from the paramyxovirus family. This virus was subsequently named as Nipah virus, after the Sungei Nipah village in Negeri Sembilan, where the virus was first isolated. The means of transmission was thought to be from bats-topigs and subsequently pigs-to-human. Since 2001, almost yearly outbreak of Nipah encephalitis has been reported from Bangladesh and West Bengal, India. These outbreaks were characterized by direct bats-to-human, and human-to-human spread of infection. Nipah virus shares many similar characteristics to Hendra virus, first isolated in an outbreak of respiratory illness involving horses in Australia in 1994. Because of their homology, a new genus called Henipavirus (Hendra + Nipah) was introduced. Henipavirus infection is a human disease manifesting most often as acute encephalitis (which may be relapsing or late-onset) or pneumonia, with a high mortality rate. Pteropus bats act as reservoir for the virus, which subsequently lead to human spread. Transmission may be from consumption of food contaminated by bats secretion, contact with infected animals, or human-to-human spread. With wide geographical distribution of Pteropus bats, Henipavirus infection has become an important emerging human infection with worldwide implication.
    Matched MeSH terms: Paramyxovirinae
  5. Yaiw KC, Crameri G, Wang L, Chong HT, Chua KB, Tan CT, et al.
    J Infect Dis, 2007 Sep 15;196(6):884-6.
    PMID: 17703419
    Tioman virus, a relatively new paramyxovirus, was isolated from fruit bats (Pteropus species) on Tioman Island, Malaysia, in 2001. The objective of this study was to determine the prevalence of antibodies to T. virus in island inhabitants, by use of comparative ELISA and serum neutralization assays. Of the 169 human sera analyzed, 5 (approximately 3.0%) were positive for T. virus, by comparative ELISA. Of these 5 sera, 3 (1.8% of the total) had neutralizing antibodies against T. virus, suggesting previous infection of this study population by this virus or a similar virus.
    Matched MeSH terms: Paramyxovirinae/immunology*
  6. Solomon T
    Curr. Opin. Neurol., 2003 Jun;16(3):411-8.
    PMID: 12858080
    The exotic and emerging viral encephalitides are caused by animal or human viruses and characterised by sudden unexpected outbreaks of neurological disease, usually in tropical and sub-tropical regions, but sometimes spreading to temperate areas. Although a wide range of viruses come within this label, as this review highlights, there are common research questions as to the origin and spread of the viruses, the contribution of viral and host factors to the clinical presentations and outcome, and the possibilities for treatment and vaccination.
    Matched MeSH terms: Paramyxovirinae/pathogenicity
  7. Chua KB
    Microbes Infect., 2003 May;5(6):487-90.
    PMID: 12758277
    During the outbreak of Nipah virus encephalitis involving pigs and humans in peninsular Malaysia in 1998/1999, a conventional approach was initially undertaken to collect specimens from fruit bats by mist-netting and shooting, as an integral part of wildlife surveillance of the natural reservoir host of Nipah virus. This study describes a novel method of collecting fruit bats' urine samples using plastic sheets for isolation of Nipah virus. This novel approach resulted in the isolation of several other known and unidentified infectious agents besides Nipah virus.
    Matched MeSH terms: Paramyxovirinae/isolation & purification*
  8. Chua KB
    J Clin Virol, 2003 Apr;26(3):265-75.
    PMID: 12637075
    Nipah virus, a novel paramyxovirus, closely related to Hendra virus emerged in northern part of Peninsular Malaysia in 1998. The virus caused an outbreak of severe febrile encephalitis in humans with a high mortality rate, whereas, in pigs, encephalitis and respiratory diseases but with a relatively low mortality rate. The outbreak subsequently spread to various regions of the country and Singapore in the south due to the movement of infected pigs. Nipah virus caused systemic infections in humans, pigs and other mammals. Histopathological and radiological findings were characteristic of the disease. Fruitbats of Pteropid species were identified as the natural reservoir hosts. Evidence suggested that climatic and anthropogenic driven ecological changes coupled with the location of piggeries in orchard and the design of pigsties allowed the spill-over of this novel paramyxovirus from its reservoir host into the domestic pigs and ultimately to humans and other animals.
    Matched MeSH terms: Paramyxovirinae/isolation & purification*
  9. Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, et al.
    Virus Res, 2003 Mar;92(1):89-98.
    PMID: 12606080
    Nipah virus, which was first recognized during an outbreak of encephalitis with high mortality in Peninsular Malaysia during 1998-1999, is most closely related to Hendra virus, another emergent paramyxovirus first recognized in Australia in 1994. We have studied the morphologic features of Nipah virus in infected Vero E6 cells and human brain by using standard and immunogold electron microscopy and ultrastructural in situ hybridization. Nipah virions are enveloped particles composed of a tangle of filamentous nucleocapsids and measured as large as 1900 nm in diameter. The nucleocapsids measured up to 1.67 microm in length and had the herringbone structure characteristic for paramyxoviruses. Cellular infection was associated with multinucleation, intracytoplasmic nucleocapsid inclusions (NCIs), and long cytoplasmic tubules. Previously undescribed for other members of the family Paramyxoviridae, infected cells also contained an inclusion formed of reticular structures. Ultrastructural ISH studies suggest these inclusions play an important role in the transcription process.
    Matched MeSH terms: Paramyxovirinae/genetics; Paramyxovirinae/growth & development*; Paramyxovirinae/physiology*; Paramyxovirinae/ultrastructure
  10. Tan CT, Wong KT
    Ann Acad Med Singap, 2003 Jan;32(1):112-7.
    PMID: 12625108
    INTRODUCTION: Between September 1998 and June 1999, there was a severe outbreak of viral encephalitis among the pig farm workers in Malaysia.

    METHODS: This is a review of the published literature related to the outbreak with the focus on human diseases.

    RESULTS: The encephalitis was caused by a newly discovered paramyxovirus related to Hendra virus, later named Nipah virus. There were 265 patients with acute encephalitis. The disease is thought to spread from pig to man through close contact. The risk of human-to-human spread is thought to below. The disease affected mainly adult Chinese males, half of whom had affected family members. The disease presented mainly as acute encephalitis with a short incubation period of less than two weeks, with the main symptoms of fever, headache, and giddiness followed by coma. Distinctive clinical signs include segmental myoclonus, areflexia and hypotonia, hypertension, and tachycardia. Initial cerebrospinal fluid was abnormal in 75% of patients. Serology was helpful in confirming the diagnosis. Magnetic resonance imaging showed distinctive changes of multiple, discrete, and small high signal lesions, best seen with fluid-attenuated inversion recovery (FLAIR) sequences. Mortality was high at 40% and death was probably due to severe brainstem involvement. The main necropsy finding in acute encephalitis was that of disseminated microinfarction associated with vasculitis and direct neuronal involvement. Ribavirin was able to reduce the mortality by 36%. Relapse encephalitis was seen in 7.5% of those who recovered from acute encephalitis, and late-onset encephalitis in 3.4% of those with initial non-encephalitic or asymptomatic diseases. The mean interval between initial illness and the onset of the complication was 8.4 months. The relapse and late-onset encephalitis which manifested as focal encephalitis arose from recurrent infection.

    CONCLUSION: Nipah virus, a recently discovered paramyxovirus, causes a unique encephalitis with high mortality as well as relapse and late-onset encephalitis. The infection is mainly spread from pigs to man.

    Matched MeSH terms: Paramyxovirinae*
  11. Mackenzie JS, Field HE, Guyatt KJ
    J Appl Microbiol, 2003;94 Suppl:59S-69S.
    PMID: 12675937
    Since 1994, a number of novel viruses have been described from bats in Australia and Malaysia, particularly from fruit bats belonging to the genus Pteropus (flying foxes), and it is probable that related viruses will be found in other countries across the geographical range of other members of the genus. These viruses include Hendra and Nipah viruses, members of a new genus, Henipaviruses, within the family Paramyxoviridae; Menangle and Tioman viruses, new members of the Rubulavirus genus within the Paramyxoviridae; and Australian bat lyssavirus (ABLV), a member of the Lyssavirus genus in the family Rhabdoviridae. All but Tioman virus are known to be associated with human and/or livestock diseases. The isolation, disease associations and biological properties of the viruses are described, and are used as the basis for developing management strategies for disease prevention or control. These strategies are directed largely at disease minimization through good farm management practices, reducing the potential for exposure to flying foxes, and better disease recognition and diagnosis, and for ABLV specifically, the use of rabies vaccine for pre- and post-exposure prophylaxis. Finally, an intriguing and long-term strategy is that of wildlife immunization through plant-derived vaccination.
    Matched MeSH terms: Paramyxovirinae
  12. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, et al.
    Am J Pathol, 2002 Dec;161(6):2153-67.
    PMID: 12466131
    In 1998, an outbreak of acute encephalitis with high mortality rates among pig handlers in Malaysia led to the discovery of a novel paramyxovirus named Nipah virus. A multidisciplinary investigation that included epidemiology, microbiology, molecular biology, and pathology was pivotal in the discovery of this new human infection. Clinical and autopsy findings were derived from a series of 32 fatal human cases of Nipah virus infection. Diagnosis was established in all cases by a combination of immunohistochemistry (IHC) and serology. Routine histological stains, IHC, and electron microscopy were used to examine autopsy tissues. The main histopathological findings included a systemic vasculitis with extensive thrombosis and parenchymal necrosis, particularly in the central nervous system. Endothelial cell damage, necrosis, and syncytial giant cell formation were seen in affected vessels. Characteristic viral inclusions were seen by light and electron microscopy. IHC analysis showed widespread presence of Nipah virus antigens in endothelial and smooth muscle cells of blood vessels. Abundant viral antigens were also seen in various parenchymal cells, particularly in neurons. Infection of endothelial cells and neurons as well as vasculitis and thrombosis seem to be critical to the pathogenesis of this new human disease.
    Matched MeSH terms: Paramyxovirinae/isolation & purification*; Paramyxovirinae/physiology
  13. Kirkland PD, Daniels PW, Nor MN, Love RJ, Philbey AW, Ross AD
    Vet. Clin. North Am. Food Anim. Pract., 2002 Nov;18(3):557-71, ix.
    PMID: 12442583
    Viruses belonging to the family Paramyxoviridae generally have not been recognized as a significant cause of disease in pigs until recently. Between 1997 and 1999, there were large outbreaks of disease in pigs in Australia and Malaysia due to infection with viruses that have been shown to be new members of the Paramyxoviridae family. This article reviews current knowledge of Menangle and Nipah virus infections in pigs, the only major species of domestic animals to experience serious disease after infection with these viruses.
    Matched MeSH terms: Paramyxovirinae
  14. Ong ST, Tan WS, Hassan SS, Mohd Lila MA, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Oct;6(5):347-50.
    PMID: 12385971
    The coding region of the nucleocapsid (N) gene was amplified from the viral RNA and inserted into the bacterial expression vector, pTrcHis2, for intracellular expression in three Escherichia coli strains: TOP 10, BL 21 and SG 935. The N protein was expressed as a fusion protein containing the myc epitope and His-tag at its C-terminal end. The amount of the fusion protein expressed in strain SG 935 was significantly higher than the other two strains, and was detected by the anti-myc antibody, anti-His and swine anti-NiV serum. Hence, the N(fus) protein produced in E. coli could serve as an alternative antigen for the detection of anti-NiV in swine.
    Matched MeSH terms: Paramyxovirinae/genetics*
  15. Kono Y, Yusnita Y, Mohd Ali AR, Maizan M, Sharifah SH, Fauzia O, et al.
    Arch Virol, 2002 Aug;147(8):1623-30.
    PMID: 12181680
    A virus, named Oya virus, was isolated in Vero cell cultures from the lungs of a pig suspected of Nipah virus infection. The virus was revealed as a spherical enveloped RNA virus with a diameter of 79 nm. For identification of Oya virus, RT-PCR was performed. A common primer set for S-RNA of the Simbu serogroup of the genus Bunyavirus was able to amplify a cDNA from Oya virus RNA. The sequence data of the product revealed that the partial gene of Oya virus S-RNA segment had 65-70% homology with published cDNA sequences of Simbu serogroup viruses. The phylogenetic analysis of the data showed that the Oya virus is grouped in Simbu serogroup, but is genetically distinct from the serogroup viruses that have been analyzed molecularly. Serological surveys revealed that the virus distributed widely and densely in Malaysia.
    Matched MeSH terms: Paramyxovirinae*
  16. Chua KB, Chua BH, Wang CW
    Malays J Pathol, 2002 Jun;24(1):15-21.
    PMID: 16329551
    In late 1998, a novel paramyxovirus named Nipah virus, emerged in Malaysia, causing fatal disease in domestic pigs and humans with substantial economic loss to the local pig industry. Pteropid fruitbats have since been identified as a natural reservoir host. Over the last two decades, the forest habitat of these bats in Southeast Asia has been substantially reduced by deforestation for pulpwood and industrial plantation. In 1997/1998, slash-and-burn deforestation resulted in the formation of a severe haze that blanketed much of Southeast Asia in the months directly preceding the Nipah virus disease outbreak. This was exacerbated by a drought driven by the severe 1997-1998 El Niño Southern Oscillation (ENSO) event. We present data suggesting that this series of events led to a reduction in the availability of flowering and fruiting forest trees for foraging by fruitbats and culminated in unprecedented encroachment of fruitbats into cultivated fruit orchards in 1997/1998. These anthropogenic events, coupled with the location of piggeries in orchards and the design of pigsties allowed transmission of a novel paramyxovirus from its reservoir host to the domestic pig and ultimately to the human population.
    Matched MeSH terms: Paramyxovirinae/isolation & purification; Paramyxovirinae/pathogenicity
  17. Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB, Chew NK, et al.
    Ann Neurol, 2002 Jun;51(6):703-8.
    PMID: 12112075
    An outbreak of infection with the Nipah virus, a novel paramyxovirus, occurred among pig farmers between September 1998 and June 1999 in Malaysia, involving 265 patients with 105 fatalities. This is a follow-up study 24 months after the outbreak. Twelve survivors (7.5%) of acute encephalitis had recurrent neurological disease (relapsed encephalitis). Of those who initially had acute nonencephalitic or asymptomatic infection, 10 patients (3.4%) had late-onset encephalitis. The mean interval between the first neurological episode and the time of initial infection was 8.4 months. Three patients had a second neurological episode. The onset of the relapsed or late-onset encephalitis was usually acute. Common clinical features were fever, headache, seizures, and focal neurological signs. Four of the 22 relapsed and late-onset encephalitis patients (18%) died. Magnetic resonance imaging typically showed patchy areas of confluent cortical lesions. Serial single-photon emission computed tomography showed the evolution of focal hyperperfusion to hypoperfusion in the corresponding areas. Necropsy of 2 patients showed changes of focal encephalitis with positive immunolocalization for Nipah virus antigens but no evidence of perivenous demyelination. We concluded that a unique relapsing and remitting encephalitis or late-onset encephalitis may result as a complication of persistent Nipah virus infection in the central nervous system.
    Matched MeSH terms: Paramyxovirinae*
  18. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al.
    Microbes Infect., 2002 Feb;4(2):145-51.
    PMID: 11880045
    In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.
    Matched MeSH terms: Paramyxovirinae/genetics; Paramyxovirinae/immunology; Paramyxovirinae/isolation & purification*
  19. Chong HT, Kunjapan SR, Thayaparan T, Tong J, Petharunam V, Jusoh MR, et al.
    Can J Neurol Sci, 2002 Feb;29(1):83-7.
    PMID: 11858542
    BACKGROUND: An outbreak of viral encephalitis occurred among pig industry workers in Malaysia in September 1998 to April 1999. The encephalitis was attributed to a new paramyxovirus, Nipah virus. This is a description of the clinical features of 103 patients treated in the Seremban Hospital with characterization of the prognostic factors.

    METHODS: Clinical case records and laboratory investigations were reviewed. The case definition was: patients from the outbreak area, direct contact or in close proximity with pigs, clinical or CSF features of encephalitis.

    RESULTS: The mean age was 38 years, 89% were male, 58% were ethnic Chinese, 78% were pig farm owners or hired workers. The mean incubation period was 10 days. The patients typically presented with nonspecific systemic symptoms of fever, headache, myalgia and sore throat. Seizures and focal neurological signs were seen in 16% and 5% respectively. In the more severe cases, this was followed by drowsiness and deteriorating consciousness requiring ventilation in 61%. Autonomic disturbances and myoclonic jerks were common features. The mortality was high at 41%. Systolic hypertension, tachycardia and high fever were associated with poor outcome. On the other hand, 40% recovered fully. As for the other 19%, the residual neurological signs were mostly mild.

    CONCLUSION: Nipah virus caused an encephalitis illness with short incubation period and high mortality. The prognosis for the survivors was good.

    Matched MeSH terms: Paramyxovirinae*
  20. Crameri G, Wang LF, Morrissy C, White J, Eaton BT
    J Virol Methods, 2002 Jan;99(1-2):41-51.
    PMID: 11684302
    Rapid immune plaque assays have been developed to quantify biohazard level 4 agents Hendra and Nipah viruses and detect neutralising antibodies to both viruses. The methods rely on the fact that both viruses rapidly generate large syncytia in monolayers of Vero cells within 24 h and that monospecific antiserum to the Hendra virus phosphoprotein (P) detects that protein in both Hendra and Nipah virus-induced syncytia after methanol fixation of virus-infected cells. The P protein is a constituent of the ribonucleoprotein core of the viruses and a component of the viral RNA-dependent RNA polymerase and is made in significant amounts in infected cells. In the immune plaque assay, anti-P antibody is localised by an alkaline phosphatase-linked second antibody and the Western blot substrates 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium. A modification of the rapid immune plaque assay was also used to detect antibodies to Nipah virus in a panel of porcine field sera from Malaysia and the results showed good agreement between the immune plaque assay and a traditional serum neutralisation test. After methanol fixation, plates can be stored for up to 7 months and may be used in the immune plaque assay to complement the enzyme-linked immunosorbent assay screening of sera for antibodies to Nipah virus. At present, all enzyme-linked immunosorbent assay positive sera are subject to confirmatory serum neutralisation tests. Use of the immune plaque assay may reduce the number of sera requiring confirmatory neutralisation testing for Nipah virus antibodies under biohazard level 4 conditions by identifying those that generate false positive in the enzyme-linked immunosorbent assay.
    Matched MeSH terms: Paramyxovirinae/growth & development; Paramyxovirinae/immunology*; Paramyxovirinae/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links