Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Lim HC, Habib A, Chen WJ
    Genes (Basel), 2021 11 29;12(12).
    PMID: 34946874 DOI: 10.3390/genes12121926
    A broad-scale comparative phylogeographic and phylogenetic study of pennah croakers, mainly Pennahia anea, P. macrocephalus, and P. ovata was conducted to elucidate the mechanisms that may have driven the diversification of marine organisms in Southeast Asian waters. A total of 316 individuals from the three species, and an additional eight and six individuals of P. argentata and P. pawak were employed in this study. Two genetically divergent lineages each of P. argentata and P. anea (lineages L1 and L2) were respectively detected from the analyses based on mitochondrial cytochrome b gene data. Historical biogeography analysis with a multi-gene dataset revealed that Pennahia species most likely originated in the South China Sea and expanded into the eastern Indian Ocean, East China Sea, and northwestern Pacific Ocean through three separate range expansions. The main diversifications of Pennahia species occurred during Miocene and Pliocene periods, and the occurrences of lineage divergences within P. anea and P. argentata were during the Pleistocene, likely as a consequence of cyclical glaciations. The population expansions that occurred after the sea level rise might be the reason for the population homogeneity observed in P. macrocephalus and most P. anea L2 South China Sea populations. The structure observed between the two populations of P. ovata, and the restricted distributions of P. anea lineage L1 and P. ovata in the eastern Indian Ocean, might have been hampered by the northward flowing ocean current at the Malacca Strait and by the distribution of coral reefs or rocky bottoms. While our results support S. Ekman's center-of-origin hypothesis taking place in the South China Sea, the Malacca Strait serving as the center of overlap is a supplementary postulation for explaining the present-day high diversity of pennah croakers centered in these waters.
    Matched MeSH terms: Perciformes/genetics
  2. Mohd Yusoff NIS, Mat Jaafar TNA, Vilasri V, Mohd Nor SA, Seah YG, Habib A, et al.
    Sci Rep, 2021 Jun 25;11(1):13357.
    PMID: 34172804 DOI: 10.1038/s41598-021-92905-6
    Benthic species, though ecologically important, are vulnerable to genetic loss and population size reduction due to impacts from fishing trawls. An assessment of genetic diversity and population structure is therefore needed to assist in a resource management program. To address this issue, the two-spined yellowtail stargazer (Uranoscopus cognatus) was collected within selected locations in the Indo-West Pacific (IWP). The partial mitochondrial DNA cytochrome c oxidase subunit 1 and the nuclear DNA recombination activating gene 1 were sequenced. Genetic diversity analyses revealed that the populations were moderately to highly diversified (haplotype diversity, H = 0.490-0.900, nucleotide diversity, π = 0.0010-0.0034) except sampling station (ST) 1 and 14. The low diversity level, however was apparent only in the matrilineal marker (H = 0.118-0.216; π = 0.0004-0.0008), possibly due to stochastic factors or anthropogenic stressors. Population structure analyses revealed a retention of ancestral polymorphism that was likely due to incomplete lineage sorting in U. cognatus, and prolonged vicariance by the Indo-Pacific Barrier has partitioned them into separate stock units. Population segregation was also shown by the phenotypic divergence in allopatric populations, regarding the premaxillary protrusion, which is possibly associated with the mechanism for upper jaw movement in biomechanical feeding approaches. The moderate genetic diversity estimated for each region, in addition to past population expansion events, indicated that U. cognatus within the IWP was still healthy and abundant (except in ST1 and 14), and two stock units were identified to be subjected to a specific resource management program.
    Matched MeSH terms: Perciformes/genetics*
  3. Qiu B, Fang S, Ikhwanuddin M, Wong L, Ma H
    Mol Biol Rep, 2020 Apr;47(4):3011-3017.
    PMID: 32124169 DOI: 10.1007/s11033-020-05348-z
    In this study, we first conducted a genome survey assay for Sillago sihama by Illumina sequencing platform, and then developed 15 polymorphic microsatellite loci in a wild population. A total of 129.46 Gb raw data were obtained, of which 115.07 Gb were clean data, with a sequencing depth of 179.3-folds. This genome was estimated to be 522.6 Mb in size, with the heterozygosity, repeat content and GC content being 0.63%, 21% and 44%. A total of 630,028 microsatellites were identified from the genome, of which, dinucleotide repeat was the most abundant (56.80%), followed by mononucleotide repeat (30.23%). Furthermore, 60 pairs of primers were designed and synthesized based on microsatellite sequences, of which 15 were polymorphic in a wild population. A total of 91 alleles were found, with an average of 6.07 per locus. Number of alleles, observed and expected heterozygosity per locus ranged from two to 13, from 0.250 to 0.862, and from 0.396 to 0.901, respectively. Twelve loci were highly informative (PIC > 0.5), and the others were medium informative (0.25 
    Matched MeSH terms: Perciformes/genetics
  4. Mat Jaafar TNA, Taylor MI, Mohd Nor SA, Bruyn M, Carvalho GR
    J Fish Biol, 2020 Feb;96(2):337-349.
    PMID: 31721192 DOI: 10.1111/jfb.14202
    We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%-99% in mtDNA and 63%-67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%-99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn ) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.
    Matched MeSH terms: Perciformes/genetics*
  5. Tan MH, Austin CM, Hammer MP, Lee YP, Croft LJ, Gan HM
    Gigascience, 2018 03 01;7(3):1-6.
    PMID: 29342277 DOI: 10.1093/gigascience/gix137
    Background: Some of the most widely recognized coral reef fishes are clownfish or anemonefish, members of the family Pomacentridae (subfamily: Amphiprioninae). They are popular aquarium species due to their bright colours, adaptability to captivity, and fascinating behavior. Their breeding biology (sequential hermaphrodites) and symbiotic mutualism with sea anemones have attracted much scientific interest. Moreover, there are some curious geographic-based phenotypes that warrant investigation. Leveraging on the advancement in Nanopore long read technology, we report the first hybrid assembly of the clown anemonefish (Amphiprion ocellaris) genome utilizing Illumina and Nanopore reads, further demonstrating the substantial impact of modest long read sequencing data sets on improving genome assembly statistics.

    Results: We generated 43 Gb of short Illumina reads and 9 Gb of long Nanopore reads, representing approximate genome coverage of 54× and 11×, respectively, based on the range of estimated k-mer-predicted genome sizes of between 791 and 967 Mbp. The final assembled genome is contained in 6404 scaffolds with an accumulated length of 880 Mb (96.3% BUSCO-calculated genome completeness). Compared with the Illumina-only assembly, the hybrid approach generated 94% fewer scaffolds with an 18-fold increase in N50 length (401 kb) and increased the genome completeness by an additional 16%. A total of 27 240 high-quality protein-coding genes were predicted from the clown anemonefish, 26 211 (96%) of which were annotated functionally with information from either sequence homology or protein signature searches.

    Conclusions: We present the first genome of any anemonefish and demonstrate the value of low coverage (∼11×) long Nanopore read sequencing in improving both genome assembly contiguity and completeness. The near-complete assembly of the A. ocellaris genome will be an invaluable molecular resource for supporting a range of genetic, genomic, and phylogenetic studies specifically for clownfish and more generally for other related fish species of the family Pomacentridae.

    Matched MeSH terms: Perciformes/genetics*
  6. Bakar AA, Adamson EAS, Juliana LH, Nor Mohd SA, Wei-Jen C, Man A, et al.
    PLoS One, 2018;13(9):e0202945.
    PMID: 30183729 DOI: 10.1371/journal.pone.0202945
    Management of wild fisheries resources requires accurate knowledge on which species are being routinely exploited, but it can be hard to identify fishes to species level, especially in speciose fish groups where colour patterns vary with age. Snappers of the genus Lutjanus represent one such group, where fishes can be hard to identify and as a result fisheries statistics fail to capture species-level taxonomic information. This study employs traditional morphological and DNA barcoding approaches to identify adult and juvenile Lutjanus species harvested in Malaysian waters. Our results reveal a suite of species that differs markedly from those that have previously been considered important in the Malaysian wild-capture fishery and show that official fisheries statistics do not relate to exploitation at the species level. Furthermore, DNA barcoding uncovered two divergent groups of bigeye snapper ('Lutjanus lutjanus') distributed on either side of the Malay Peninsula, displaying a biogeographical pattern similar to distributions observed for many co-occurring reef-distributed fish groups. One of these bigeye snapper groups almost certainly represents an unrecognized species in need of taxonomic description. The study demonstrates the utility of DNA barcoding in uncovering overlooked diversity and for assessing species catch composition in a complicated but economically important taxonomic group.
    Matched MeSH terms: Perciformes/genetics*
  7. Austin CM, Tan MH, Harrisson KA, Lee YP, Croft LJ, Sunnucks P, et al.
    Gigascience, 2017 08 01;6(8):1-6.
    PMID: 28873963 DOI: 10.1093/gigascience/gix063
    One of the most iconic Australian fish is the Murray cod, Maccullochella peelii (Mitchell 1838), a freshwater species that can grow to ∼1.8 metres in length and live to age ≥48 years. The Murray cod is of a conservation concern as a result of strong population contractions, but it is also popular for recreational fishing and is of growing aquaculture interest. In this study, we report the whole genome sequence of the Murray cod to support ongoing population genetics, conservation, and management research, as well as to better understand the evolutionary ecology and history of the species. A draft Murray cod genome of 633 Mbp (N50 = 109 974bp; BUSCO and CEGMA completeness of 94.2% and 91.9%, respectively) with an estimated 148 Mbp of putative repetitive sequences was assembled from the combined sequencing data of 2 fish individuals with an identical maternal lineage; 47.2 Gb of Illumina HiSeq data and 804 Mb of Nanopore data were generated from the first individual while 23.2 Gb of Illumina MiSeq data were generated from the second individual. The inclusion of Nanopore reads for scaffolding followed by subsequent gap-closing using Illumina data led to a 29% reduction in the number of scaffolds and a 55% and 54% increase in the scaffold and contig N50, respectively. We also report the first transcriptome of Murray cod that was subsequently used to annotate the Murray cod genome, leading to the identification of 26 539 protein-coding genes. We present the whole genome of the Murray cod and anticipate this will be a catalyst for a range of genetic, genomic, and phylogenetic studies of the Murray cod and more generally other fish species of the Percichthydae family.
    Matched MeSH terms: Perciformes/genetics*
  8. Polgar G, Zaccara S, Babbucci M, Fonzi F, Antognazza CM, Ishak N, et al.
    J Fish Biol, 2017 May;90(5):1926-1943.
    PMID: 28239874 DOI: 10.1111/jfb.13276
    A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver-lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed.
    Matched MeSH terms: Perciformes/genetics
  9. Gan HM, Tan MH, Lee YP, Hammer MP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4187-4188.
    PMID: 25600740
    The mitogenome of an Australian sample of the mudskipper, Periophthalmus minutus, was recovered from partial sequencing using the MiSeq sequencer. This mudskipper has a mitogenome of 16,506 base pairs (55% A + T content) made up of two ribosomal subunit genes, 13 protein-coding genes, 22 transfer RNAs, and a 838 bp non-coding AT-rich region. This is the first sequenced mitogenome for the genus Periophthalmus and the fifth for the subfamily Oxudercinae.
    Matched MeSH terms: Perciformes/genetics*
  10. Shen KN, Chang CW, Loh KH, Chen CH, Hsiao CD
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4118-4119.
    PMID: 25600747
    In this study, the complete mitogenome sequence of the Clarion angelfish, Holacanthus clarionensis (Perciformes: Pomacanthidae) has been sequenced by next-generation sequencing method. The length of the assembled mitogenome is 16,615 bp, including 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Clarion angelfish is 28.3% for A, 29.3% for C, 16.5% for G, 25.9% for T and show 85% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Clarion angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.
    Matched MeSH terms: Perciformes/genetics*
  11. Shen KN, Loh KH, Chen CH, Hsiao CD
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4122-4123.
    PMID: 25585497
    In this study, the complete mitogenome sequence of the Blue-face angelfish, Pomacanthus xanthometapon (Perciformes: Pomacanthidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consisting of 16,533 bp includes 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Blue-face angelfish is 28.7% for A, 28.9% for C, 15.9% for G, 26.6% for T and show 84% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Blue-face angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.
    Matched MeSH terms: Perciformes/genetics*
  12. Kuah MK, Jaya-Ram A, Shu-Chien AC
    PMID: 27421235 DOI: 10.1016/j.cbpa.2016.07.007
    There is a lack of understanding on how the environment and trophic niche affect the capability of long-chain polyunsaturated fatty acids (LC-PUFA) in freshwater carnivorous teleost. In this present study, we isolated and functionally characterised a fatty acyl desaturase (Fads) from the striped snakehead Channa striata. Sequence comparison and phylogenetic analysis suggested a Fads2 protein that is closely related to previously characterised Fads2 proteins from freshwater carnivorous and marine herbivorous fish species. We further demonstrated the capacity of Δ6 and Δ5 desaturation activities for this particular desaturase, with highest activities towards the conversion of omega-3 (n-3) polyunsaturated fatty acids (PUFA). Low Δ4 desaturation activity was also detected, although the significance of this at a physiological level remains to be studied. The expression of this striped snakehead Δ6/Δ5 fads2 gene was highest in brain, followed by liver and intestine. In liver, diet fortified with high LC-PUFA concentration impeded the expression of Δ6/Δ5 fads2 gene compared to vegetable oil (VO) based diets. The discovery of Δ6/Δ5 Fads2 desaturase here complements the previous discovery of a Δ4 Fads2 desaturase and an Elovl5 elongase, lending proof to the existence of all the required enzymatic machinery to biosynthesise LC-PUFA from C18 PUFA in a freshwater carnivorous species.
    Matched MeSH terms: Perciformes/genetics*
  13. Jaya-Ram A, Shu-Chien AC, Kuah MK
    Fish Physiol Biochem, 2016 Aug;42(4):1107-22.
    PMID: 26842427 DOI: 10.1007/s10695-016-0201-y
    Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ∆6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ∆4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species.
    Matched MeSH terms: Perciformes/genetics
  14. Kim KS, Noh CH, Moon SJ, Han SH, Bang IC
    Mol Biol Rep, 2016 Jun;43(6):541-8.
    PMID: 27059503 DOI: 10.1007/s11033-016-3980-4
    Giant grouper (Epinephelus lanceolatus) is a commercially important species, but its wild population has recently been classified as vulnerable. This species has significant potential for use in aquaculture, though a greater understanding of population genetics is necessary for selective breeding programs to minimize kinship for genetically healthy individuals. High-throughput pyrosequencing of genomic DNA was used to identify and characterize novel tetra- and trinucleotide microsatellite markers in giant grouper from Sabah, Malaysia. In total, of 62,763 sequences containing simple sequence repeats (SSRs) were obtained, and 78 SSR loci were selected to possibly contain tetra- and trinucleotide repeats. Of these loci, 16 had tetra- and 8 had trinucleotide repeats, all of which exhibited polymorphisms within easily genotyped regions. A total of 143 alleles were identified with an average of 5.94 alleles per locus, with mean observed and expected heterozygosities of 0.648 and 0.620, respectively. Among of them, 15 microsatellite markers were identified without null alleles and with Hardy-Weinberg equilibrium. These alleles showed a combined non-exclusion probability of 0.01138. The probability of individual identification (PID) value combined with in descending order 12 microsatellite markers was 0.00008, which strongly suggests that the use of the microsatellite markers developed in this study in various combinations would result in a high resolution method for parentage analysis and individual identification. These markers could be used to establish a broodstock management program for giant grouper and to provide a foundation for genetic studies such as population structure, parentage analysis, and kinship selection.
    Matched MeSH terms: Perciformes/genetics*
  15. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329292 DOI: 10.3109/19401736.2014.974174
    The mitogenome of the Australian freshwater blackfish, Gadopsis marmoratus was recovered coverage by genome skimming using the MiSeq sequencer (GenBank Accession Number: NC_024436). The blackfish mitogenome has 16,407 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the 5th mitogenome sequence to be reported for the family Percichthyidae.
    Matched MeSH terms: Perciformes/genetics*
  16. Tan MP, Jamsari AF, Siti Azizah MN
    J Fish Biol, 2016 May;88(5):1932-48.
    PMID: 27027270 DOI: 10.1111/jfb.12956
    Genetic variability and differences in wild striped snakehead Channa striata from Malaysia were analysed by genotyping nine novel nuclear microsatellite loci. Analysis revealed moderate-to-high genetic diversity in most of the populations, indicative of large effective population sizes. The highly diversified populations are admixed populations and, therefore, can be recommended as potential candidates for selective breeding and conservation since they each contain most of the alleles found in their particular region. Three homogenous groups of the wild populations were identified, apparently separated by effective barriers, in accordance with contemporary drainage patterns. The highest population pairwise FST found between members of the same group reflects the ancient population connectivity; yet prolonged geographical isolation resulted in adaptation of alleles to local contemporary environmental change. A significant relationship between genetic distance and geographical isolation was observed (r = 0·644, P < 0·01). Anthropogenic perturbations indicated apparent genetic proximity between distant populations.
    Matched MeSH terms: Perciformes/genetics*
  17. Gan HM, Tan MH, Austin CM
    PMID: 24617484 DOI: 10.3109/19401736.2014.895996
    The complete mitochondrial genome of the conservationally significant Macquarie perch (Macquaria australasica) was obtained from low-coverage shotgun sequencing using the MiSeq sequencer. The M. australasica mitogenome has 16,496 base pairs (55% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the first mitogenome sequence for the genus Macquaria, and the third to be reported for the family Percichthyidae.
    Matched MeSH terms: Perciformes/genetics
  18. Nurdalila AA, Bunawan H, Kumar SV, Rodrigues KF, Baharum SN
    Int J Mol Sci, 2015 Jul 02;16(7):14884-900.
    PMID: 26147421 DOI: 10.3390/ijms160714884
    Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance-Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish.
    Matched MeSH terms: Perciformes/genetics*
  19. Kuah MK, Jaya-Ram A, Shu-Chien AC
    Biochim. Biophys. Acta, 2015 Mar;1851(3):248-60.
    PMID: 25542509 DOI: 10.1016/j.bbalip.2014.12.012
    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores.
    Matched MeSH terms: Perciformes/genetics
  20. Akib NA, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, et al.
    PLoS One, 2015;10(3):e0119749.
    PMID: 25786216 DOI: 10.1371/journal.pone.0119749
    Phylogeographic patterns and population structure of the pelagic Indian mackerel, Rastrelliger kanagurta were examined in 23 populations collected from the Indonesian-Malaysian Archipelago (IMA) and the West Indian Ocean (WIO). Despite the vast expanse of the IMA and neighbouring seas, no evidence for geographical structure was evident. An indication that R. kanagurta populations across this region are essentially panmictic. This study also revealed that historical isolation was insufficient for R. kanagurta to attain migration drift equilibrium. Two distinct subpopulations were detected between the WIO and the IMA (and adjacent populations); interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the IMA and WIO regions suggest historical isolation as a result of fluctuations in sea levels during the late Pleistocene. This occurrence resulted in the evolution of a phylogeographic break for this species to the north of the Andaman Sea.
    Matched MeSH terms: Perciformes/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links