Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Kermani N, Abu-Hassan ZA, Dieng H, Ismail NF, Attia M, Abd Ghani I
    PLoS One, 2013;8(5):e62884.
    PMID: 23675435 DOI: 10.1371/journal.pone.0062884
    Biological control using pathogenic microsporidia could be an alternative to chemical control of the diamondback moth (DBM) Plutella xylostella (Lepidoptera: Plutellidae). The microsporidium Nosema bombycis (NB) is one of the numerous pathogens that can be used in the Integrated Pest Management (IPM) of DBM. However, its pathogenicity or effectiveness can be influenced by various factors, particularly temperature. This study was therefore conducted to investigate the effect of temperature on NB infection of DBM larvae. Second-instar larvae at different doses (spore concentration: 0, 1×10²,1×10³,1×10⁴, and 1×10⁵) at 15°, 20°, 25°, 30° and 35°C and a relative humidity(RH) of 65% and light dark cycle (L:D) of 12∶12. Larval mortality was recorded at 24 h intervals until the larvae had either died or pupated. The results showed that the spore concentration had a significant negative effect on larval survival at all temperatures, although this effect was more pronounced (92%) at 35°C compared with that at 20 and 30°C (≃50%) and 25°C (26%). Histological observations showed that Nosema preferentially infected the adipose tissue and epithelial cells of the midgut, resulting in marked vacuolization of the cytoplasm. These findings suggest that Nosema damaged the midgut epithelial cells. Our results suggest that Nosema had a direct adverse effect on DBM, and could be utilized as an important biopesticide alternative to chemical insecticides in IPM.
    Matched MeSH terms: Photoperiod
  2. Fathurrahman L, Hajar AH, Sakinah DW, Nurhazwani Z, Ahmad J
    Pak J Biol Sci, 2013 Nov 15;16(22):1517-23.
    PMID: 24511694
    One of the main limitations of productivity in photobioreactor is the inefficient conversion of the available light into biomass. Photoautotrophic cells such as microalgae only absorb a small fraction of supplied illumination due to limitation of its photosystem's (PS) absorbing rate. However, phenomenon of Flashing Light Effect (FLE) allows microalgae to utilize strong light exceptionally through intermittent exposure. Exposure of strong light at correct frequency of light and dark photoperiod would allow two pigment-protein complexes, PSI and PSII to be at the equilibrium mid-point potential to allow efficient light conversion. Narrow range of optimum frequency is crucial since overexposure to strong light would injured photosynthetic apparatus whereas longer dark period would contributed to loss of biomass due to triacylglycerol metabolism. The behaviour of microalgae towards various illumination conditions of FLE was determined at batch Photobioreactor (PBR) by varying the aeration flow rate: 16.94, 33.14 and 49.28 mL sec(-1) which yield, respectively the light exposure time of 3.99, 1.71 and 1.1 seconds per cycle. Maximum cell density in FLE-PBR was significantly higher at the exponential phase as compared to the continuously illuminated culture (p = 5.62 x 10(-5), a = 0.05) under the flow rate of 25.07 mL sec(-1). Maximum cell density yield of FLE-PBR and continuously illuminated PBR was, respectively 3.1125 x 10(7) and 2.947 x 10(7) cells mL(-1). Utilization of FLE as an innovative solution to increase the efficiency of microalgae to convert light into chemical energy would revolutionize the microalgae culture, reduce the time for cultivation and produce higher maximum biomass density.
    Matched MeSH terms: Photoperiod
  3. Kamakura M, Kosugi Y, Takanashi S, Uemura A, Utsugi H, Kassim AR
    Tree Physiol, 2015 Jan;35(1):61-70.
    PMID: 25595752 DOI: 10.1093/treephys/tpu109
    In this study, we demonstrated the occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees grown in a lowland dipterocarp forest in Peninsular Malaysia. To evaluate the patterns of stomatal behavior, we used three techniques simultaneously to analyze heterobaric or homobaric leaves from five tree species ranging from 0.6 to 31 m in height: (i) diurnal changes in chlorophyll fluorescence imaging, (ii) observation and simulation of leaf gas-exchange rates and (iii) a pressure-infiltration method. Measurements were performed in situ with 1000 or 500 μmol m(-2) s(-1) photosynthetic photon flux density. Diurnal patterns in the spatial distribution of photosynthetic electron transport rate (J) mapped from chlorophyll fluorescence images, a comparison of observed and simulated leaf gas-exchange rates, and the spatial distribution of stomatal apertures obtained from the acid-fuchsin-infiltrated area showed that patchy stomatal closure coupled with severe midday depression of photosynthesis occurred in Neobalanocarpus heimii (King) Ashton, a higher canopy tree with heterobaric leaves due to the higher leaf temperature and vapor pressure deficit. However, subcanopy or understory trees showed uniform stomatal behavior throughout the day, although they also have heterobaric leaves. These results suggest that the occurrence of stomatal patchiness is determined by tree size and/or environmental conditions. The analysis of spatial scale by chlorophyll fluorescence imaging showed that several adjacent anatomical patches (lamina areas bounded by bundle-sheath extensions within the lamina) may co-operate for the distributed patterns of J and stomatal apertures.
    Matched MeSH terms: Photoperiod
  4. Atta M, Idris A, Bukhari A, Wahidin S
    Bioresour Technol, 2013 Nov;148:373-8.
    PMID: 24063820 DOI: 10.1016/j.biortech.2013.08.162
    Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of Chlorella vulgaris were investigated by using LED (Light Emitting Diode) in batch culture. C. vulgaris was grown for 13 days at three different light intensities (100, 200 and 300 μmol m(-2)s(-1)). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25°C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μmol m(-2)s(-1) of blue light (12:12 L:D) with improved specific growth (1.26 d(-1)) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.
    Matched MeSH terms: Photoperiod
  5. Ho AFW, Hao Y, Pek PP, Shahidah N, Yap S, Ng YY, et al.
    Medicine (Baltimore), 2019 Mar;98(10):e14611.
    PMID: 30855446 DOI: 10.1097/MD.0000000000014611
    Studies are divided on the effect of day-night temporal differences on clinical outcomes in out-of-hospital cardiac arrest (OHCA). This study aimed to elucidate any differences in OHCA survival between day and night occurrence, and the factors associated with differences in survival.This was a prospective, observational study of OHCA cases across multinational Pan-Asian sites. Cases were divided according to time call received by dispatch centers into day (0700H-1900H) and night (1900H-0659H). Primary outcome was 30-day survival. Secondary outcomes were prehospital and hospital modifiable resuscitative characteristics.About 22,501 out of 55,881 cases occurred at night. Night cases were less likely to be witnessed (40.2% vs. 43.1%, P 
    Matched MeSH terms: Photoperiod
  6. Khalid MF, Lee CY, Doggett SL, Veera Singham G
    PLoS One, 2019;14(6):e0218343.
    PMID: 31206537 DOI: 10.1371/journal.pone.0218343
    Many insect species display daily variation of sensitivity to insecticides when they are exposed to the same concentration at different times during the day. To date, this has not been investigated in bed bugs. To address this, we explored circadian rhythms in insecticide susceptibility, xenobiotic metabolizing (XM) gene expressions, and metabolic detoxification in the common bed bug, Cimex lectularius. An insecticide susceptible Monheim strain of C. lectularius was most tolerant of deltamethrin during the late photophase at ZT9 (i.e. nine hours after light is present in the light-dark cycle (LD) cycle) and similarly repeated at CT9 (i.e. nine hours into the subjective day in constant darkness (DD)) suggesting endogenous circadian involvement in susceptibility to deltamethrin. No diel rhythm was observed against imidacloprid insecticide despite significant daily susceptibility in both LD and DD conditions. Rhythmic expressions of metabolic detoxification genes, GSTs1 and CYP397A1 displayed similar expression patterns with total GST and P450 enzyme activities in LD and DD conditions, respectively. The oscillation of mRNA levels of GSTs1 and CYP397A1 was found consistent with peak phases of deltamethrin susceptibility in C. lectularius. This study demonstrates that circadian patterns of metabolic detoxification gene expression occur within C. lectularius. As a consequence, insecticide efficacy can vary dramatically throughout a 24 hour period.
    Matched MeSH terms: Photoperiod
  7. Okomoda VT, Mithun S, Chatterji A, Effendy MAW, Oladimeji AS, Abol-Munafi AB, et al.
    Fish Physiol Biochem, 2020 Aug;46(4):1497-1505.
    PMID: 32378001 DOI: 10.1007/s10695-020-00807-7
    This study was designed to optimize the culture conditions of juvenile Epinephelus fuscoguttatus (Forsskål, 1775) under laboratory conditions. To this effect, the rate of oxygen consumption was monitored as an index of stress under different temperature, salinity, pH, photoperiod, and urea concentrations. The result obtained after 12 h of exposure suggests the preference of the juvenile E. fuscoguttatus to a temperature range of 15-25 °C and salinity of 30 ppt. Based on this study, temperature was found to be the most lethal as 100% mortality was observed after 6 h in fish exposure to temperatures above the optimal (≥ 30 °C). However, the oxygen consumption rate was similar under the different pH, photoperiod, and urea concentration tested. It was concluded that water temperature was most critical in terms of respiration physiology of the juvenile E. fuscoguttatus given the range and levels of environmental factors tested in this study.
    Matched MeSH terms: Photoperiod
  8. Kugan HM, Rejab NA, Sahruzaini NA, Harikrishna JA, Baisakh N, Cheng A
    Int J Mol Sci, 2021 Apr 27;22(9).
    PMID: 33925559 DOI: 10.3390/ijms22094588
    The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light-dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed "poor man's meat".
    Matched MeSH terms: Photoperiod
  9. Lim PT, Ogata T
    Toxicon, 2005 May;45(6):699-710.
    PMID: 15804519
    Four tropical PSP toxins-producing dinoflagellates, Alexandrium minutum, Alexandrium tamiyavanichii, Alexandrium tamarense and Alexandrium peruvianum from Malaysian waters were studied to investigate the influences of salinity on growth and toxin production. Experiments were conducted on constant temperature 25 degrees C, 140 microE mol m(-2) s(-1) and under 14:10 light:dark photo-cycle with salinity ranged from 2 to 30 psu. The PSP-toxin congeners, GTX 1-6, STX, dcSTX, NEO and C1-C2 were analysed by high performance liquid chromatography. Salinity tolerance of the four species in decreasing order is A. minutum>A. peruvianum>A. tamarense>A. tamiyavanichii. Specific growth rates and maximum densities varied among these species with A. minutum recorded as the highest, 0.5 day(-1) and 6 x 10(4) cells L(-1). Toxin content decreased with elevated salinities in A. minutum, the highest toxin content was about 12 fmole cell(-1) at 5 psu. In A. tamiyavanichii, toxin content peaked at optimal growth salinity (20 and 25 psu). Toxin content of A. tamarense, somehow peaked at sub-optimal growth salinity (15 and 30 psu). Results of this study implied that salinity fluctuation not only influenced the growth physiology but also toxin production of these species.
    Matched MeSH terms: Photoperiod
  10. Yeang HY
    J Exp Bot, 2013 Jul;64(10):2643-52.
    PMID: 23645867 DOI: 10.1093/jxb/ert130
    In photoperiodic flowering, long-day (LD) plants are induced to flower seasonally when the daylight hours are long, whereas flowering in short-day (SD) plants is promoted under short photoperiods. According to the widely accepted external coincidence model, flowering occurs in LD Arabidopsis when the circadian rhythm of the gene CONSTANS (CO) peaks in the afternoon, when it is light during long days but dark when the days are short. Nevertheless, extending this explanation to SD flowering in rice, Oriza sativa, requires LD and SD plants to have 'opposite light requirements' as the CO orthologue in rice, HEADING-DATE1 (Hd1), promotes flowering only under short photoperiods. This report proposes a role of the plant's solar rhythm in promoting seasonal flowering. The interaction between rhythmic genes entrained to the solar clock and those entrained to the circadian clock form the basis of an internal coincidence model that explains both LD and SD flowering equally well. The model invokes no presumption of opposite light requirements between LD and SD plants, and further argues against any specific requirement of either light or darkness for SD flowering. Internal coincidence predicts the inhibition of SD flowering of the rice plant by a night break (a brief interruption of light), while it also provides a plausible explanation for how a judiciously timed night break promotes Arabidopsis flowering even on short days. It is the timing of the light transitions (sunrise and sunset) rather than the duration of light or darkness per se that regulates photoperiod-controlled flowering.
    Matched MeSH terms: Photoperiod*
  11. Ahmed AB, Rao AS, Rao MV, Taha RM
    ScientificWorldJournal, 2012;2012:897867.
    PMID: 22629221 DOI: 10.1100/2012/897867
    Gymnema sylvestre (R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.
    Matched MeSH terms: Photoperiod*
  12. Yeang HY
    Bioessays, 2009 Nov;31(11):1211-8.
    PMID: 19795408 DOI: 10.1002/bies.200900078
    The plant maintains a 24-h circadian cycle that controls the sequential activation of many physiological and developmental functions. There is empirical evidence suggesting that two types of circadian rhythms exist. Some plant rhythms appear to be set by the light transition at dawn, and are calibrated to circadian (zeitgeber) time, which is measured from sunrise. Other rhythms are set by both dawn and dusk, and are calibrated to solar time that is measured from mid-day. Rhythms on circadian timing shift seasonally in tandem with the timing of dawn that occurs earlier in summer and later in winter. On the other hand, rhythms set to solar time are maintained independently of the season, the timing of noon being constant year-round. Various rhythms that run in-phase and out-of-phase with one another seasonally may provide a means to time and induce seasonal events such as flowering.
    Matched MeSH terms: Photoperiod
  13. Afolabi O, Milan B, Amoussa R, Koebnik R, Poulin L, Szurek B, et al.
    Plant Dis, 2014 Oct;98(10):1426.
    PMID: 30703943 DOI: 10.1094/PDIS-05-14-0504-PDN
    On May 9, 2013, symptoms reminiscent of bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola were observed on rice plants at the panicle emergence stage at Musenyi, Gihanga, and Rugombo fields in Burundi. Affected leaves showed water-soaked translucent lesions and yellow-brown to black streaks, sometimes with visible exudates on leaf surfaces. Symptomatic leaves were ground in sterile water and the suspensions obtained were subjected to a multiplex PCR assay diagnostic for X. oryzae pathovars (3). Three DNA fragments (331, 691, and 945 bp) corresponding to X. oryzae pv. oryzicola were observed after agarose gel electrophoresis. Single bacterial colonies were then isolated from surface-sterilized, infected leaves after grinding in sterile water and plating of 10-fold dilutions of the cell suspension on semi-selective PSA medium (4). After incubation at 28°C for 5 days, each of four independent cultures yielded single yellow, mucoid Xanthomonas-like colonies (named Bur_1, Bur_2, Bur_6, and Bur_7) that resembled the positive control strain MAI10 (1). These strains originated from Musenyi (Bur_1), Gihanga (Bur_2), and Rugumbo (Bur_6 and Bur_7). Multiplex PCR assays on the four putative X. oryzae pv. oryzicola strains yielded the three diagnostic DNA fragments mentioned above. All strains were further analyzed by sequence analysis of portions of the gyrB gene using the universal primers gyrB1-F and gyrB1-R for PCR amplification (5). The 762-bp DNA fragment was identical to gyrB sequences from the Asian X. oryzae pv. oryzicola strains BLS256 (Philippines), ICMP 12013 (China), LMG 797 and NCPPB 2921 (both Malaysia), and from the African strain MAI3 (Mali) (2). The partial nucleotide sequence of the gyrB gene of Bur_1 was submitted to GenBank (Accession No. KJ801400). Pathogenicity tests were performed on greenhouse-grown 4-week-old rice plants of the cvs. Nipponbare, Azucena, IRBB 1, IRBB 2, IRBB 3, IRBB 7, FKR 14, PNA64F4-56, TCS 10, Gigante, and Adny 11. Bacterial cultures were grown overnight in PSA medium and re-suspended in sterile water (1 × 108 CFU/ml). Plants were inoculated with bacterial suspensions either by spraying or by leaf infiltration (1). For spray inoculation, four plants per accession and strain were used while three leaves per plant and four plants per accession and strain were inoculated by tissue infiltration. After 15 days of incubation in a BSL-3 containment facility (27 ± 1°C with a 12-h photoperiod), the spray-inoculated plants showed water-soaked lesions with yellow exudates identical to those seen in the field. For syringe-infiltrated leaves, the same symptoms were observed at the infiltrated leaf area. Re-isolation of bacteria from symptomatic leaves yielded colonies with the typical Xanthomonas morphology that were confirmed by multiplex PCR to be X. oryzae pv. oryzicola, thus fulfilling Koch's postulates. Bur_1 has been deposited in the Collection Française de Bactéries Phytopathogènes as strain CFBP 8170 ( http://www.angers-nantes.inra.fr/cfbp/ ). To our knowledge, this is the first report of X. oryzae pv. oryzicola causing bacterial leaf streak on rice in Burundi. Further surveys will help to assess its importance in the country. References: (1) C. Gonzalez et al., Mol. Plant Microbe Interact. 20:534, 2007. (2) A. Hajri et al. Mol. Plant Pathol. 13:288, 2012. (3) J. M. Lang et al. Plant Dis. 94:311, 2010. (4) L. Poulin et al. Plant Dis. 98:1423, 2014. (5) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.
    Matched MeSH terms: Photoperiod
  14. Rooney-Latham S, Blomquist CL, Scheck HJ
    Plant Dis, 2011 Nov;95(11):1478.
    PMID: 30731749 DOI: 10.1094/PDIS-03-11-0261
    Passiflora edulis Sims f. edulis, known as purple passion fruit, is a woody, perennial vine that is grown for its attractive two-part flower and its purple, edible fruit (4). In November 2009, passion fruit vines were collected during a regulatory nursery inspection in Santa Barbara County and submitted to the California Department of Food and Agriculture Plant Pest Diagnostics Laboratory. Nearly 100% of the plants inspected, all of which were approximately 1.25 m tall, appeared stunted, defoliated, and severely wilted. Dark brown vascular discoloration was present in the roots and lower stems of the plants. A pinkish violet Fusarium oxysporum colony containing chlamydospores, multiseptate macroconidia, and microconidia formed on monophialidic conidiophores was consistently isolated from roots and stems onto half-strength acidified potato dextrose agar (aPDA). All further experiments were done with an isolate obtained from a single conidium. A portion of the translation elongation factor gene (TEF-1α) was amplified and sequenced with primers ef1 and ef2 from our isolate (GenBank No. JF332039) (3). BLAST analysis of the 615-bp amplicon with the FUSARIUM-ID database showed 99% similarity with a F. oxysporum passion fruit isolate from Australia (NRRL 38273) (3). To confirm pathogenicity, washed roots of four-leaf stage seedlings approximately 10 cm tall were submerged in a conidial spore suspension (106 spores/ml) for 15 min. The conidial suspension was prepared by flooding 10-day-old cultures grown on aPDA medium with sterile distilled water. Seven seedlings were inoculated and planted in 10-cm2 pots and kept in a 25°C growth chamber with a 12-h photoperiod. Seven seedlings were mock inoculated with sterile water. After 3 weeks, four of the seven inoculated plants had leaves with yellow veins and discolored roots and had partially defoliated. Two of the four symptomatic plants also had brown stem cankers. F. oxysporum grew from the isolated roots and stems of all the inoculated plants. F. oxysporum did not grow from root and stem pieces from the water-dipped plants and the plants remained asymptomatic. Inoculations were repeated on plants approximately 15 cm tall with F. oxysporum growing from roots and stem pieces of all inoculated plants. Symptoms of yellow veins and root necrosis were not observed until 4 weeks after inoculation. Fusarium wilt caused by F. oxysporum f. sp. passiflorae is a significant disease of P. edulis f. edulis in Australia. The disease has also been reported in South Africa, Malaysia, Brazil, Panama, and Venezuela; but it is unclear as to whether the symptoms were caused by Fusarium wilt or Haematonectria canker (1). Banana poka (P. mollissima), P. ligularis, and P. foetida are also susceptible hosts (2). To our knowledge, this is the first report of Fusarium wilt caused by F. oxysporum f. sp. passiflorae on passion fruit in North America. Passion fruit is not commercially produced for consumption in California so the economic importance of this disease appears to be limited to nursery production and ornamental landscapes. The grower of the California nursery stated that the infected passion fruit plants had been propagated on site from seed. The source of inoculum at this nursery remains unknown. References: (1) I. H. Fischer and J. A. M. Rezende. Pest Tech. 2:1, 2008 (2) D. E. Garder. Plant. Dis. 73:476, 1989. (3) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (4) F. W. Martin et al. Econ. Bot. 24:333, 1970.
    Matched MeSH terms: Photoperiod
  15. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722190 DOI: 10.1094/PDIS-10-12-0902-PDN
    In June 2011, lettuce (Lactuca sativa) plants cultivated in major lettuce growing areas in Malaysia, including the Pahang and Johor states, had extensive leaf spots. In severe cases, disease incidence was recorded more than 80%. Symptoms on 50 observed plants initially were as water soaked spots (1 to 2 mm in diameter) on leaves, and then became circular spots spreading over much of the leaves. In this research, main lettuce growing areas infected by the pathogen in the mentioned states were investigated and the pathogen was isolated onto potato dextrose agar (PDA). Colonies observed were greyish green to light brown. Single conidia were formed at the terminal end of conidiophores that were 28.8 to 40.8 μm long and 11.0 to 19.2 μm wide, and 2 to 7 transverse and 1 to 4 longitudinal septa. To produce conidia, the fungus was grown on potato carrot agar (PCA) and V8 juice agar media under 8-h/16-h light/dark photoperiod. Fourteen isolates were identified Stemphylium solani based on morphological criteria described by Kim et al. (1). To confirm morphological characterization, DNA of the fungus was extracted from mycelium and PCR was done using universal primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'), which amplified the internal transcribed spacer (ITS) region of rDNA (2). The sequencing result was subjected to BLAST analysis which was 99% identical to the other published sequences in the GenBank database (GenBank Accession Nos. AF203451 and HQ840713). The nucleotide sequence was deposited in GenBank under Accession No. JQ736022. Pathogenicity testing of representative isolate was done using 20 μl of conidial suspension with a concentration of 1 × 105/ml in droplets (three drops on each leaf) on four detached 45-day-old lettuce leaves cv. BBS012 (3). Fully expended leaves were placed on moist filter paper in petri dishes and were incubated in humid chambers at 25°C. The leaves inoculated with sterile water served as control. After 7 days, disease symptoms were observed, which were similar to those symptoms collected in infected fields and the fungus was reisolated and confirmed as S. solani based on morphological criteria (1) and molecular characterization (2). Control leaves remained healthy. Pathogenicity testing was completed twice. To our knowledge, this is the first report of S. solani on lettuce in Malaysia and it may become a serious problem because of its broad host range, variability in pathogenic isolates, and prolonged active phase of the disease cycle. Previous research has shown that S. solani is a causal agent of gray leaf spot on lettuce in China (4). References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Current Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) F. L. Tai. Sylloge Fungorum Sinicorum, Sci. Press, Acad. Sin., Peking, 1979.
    Matched MeSH terms: Photoperiod
  16. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722195 DOI: 10.1094/PDIS-10-12-0901-PDN
    In 2011, a severe gray leaf spot was observed on eggplant (Solanum melongena) in major eggplant growing areas in Malaysia, including the Pahang, Johor, and Selangor states. Disease incidence was >70% in severely infected areas of about 150 ha of eggplant greenhouses and fields examined. Symptoms initially appeared as small (1 to 5 mm diameter), brownish-black specks with concentric circles on the lower leaves. The specks then coalesced and developed into greyish-brown, necrotic lesions, which also appeared on the upper leaves. Eventually, the leaves senesced and were shed. Tissue cut from the edges of leaf spots were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterilized water, dried, and incubated on potato dextrose agar (PDA). Fungal colonies were greyish green to light brown, and produced a yellow pigment. Single, muriform, brown, oblong conidia formed at the terminal end of each conidiophore, were each 21.6 to 45.6 μm long and 11.5 to 21.6 μm wide, and contained 2 to 7 transverse and 1 to 4 longitudinal septa. The conidiophores were tan to light brown and ≤220 μm long. Based on these morphological criteria, 25 isolates of the fungus were identified as Stemphylium solani (1). To produce conidia in culture, 7-day-old single-conidial cultures were established on potato carrot agar (PCA) and V8 juice agar media under an 8-h/16-h light/dark photoperiod at 25°C (4). Further confirmation of the identification was obtained by molecular characterization in which fungal DNA was extracted and the internal transcribed spacer (ITS) region of ribosomal DNA amplified using primers ITS5 and ITS4 (2), followed by direct sequencing. A BLAST search in the NCBI database revealed that the sequence was 99% identical with published ITS sequences for two isolates of S. solani (Accession Nos. AF203451 and HQ840713). The amplified ITS region was deposited in GenBank (JQ736023). Pathogenicity testing of a representative isolate was performed on detached, 45-day-old eggplant leaves of the cv. 125066-X under laboratory conditions. Four fully expanded leaves (one wounded and two non-wounded leaflets/leaf) were placed on moist filter paper in petri dishes, and each leaflet inoculated with a 20-μl drop of a conidial suspension containing 1 × 105 conidia/ml in sterilized, distilled water (3). The leaves were wounded by applying pressure to leaf blades with the serrated edge of forceps. Four control leaves were inoculated similarly with sterilized, distilled water. Inoculated leaves were incubated in humid chambers at 25°C with 95% RH and a 12-h photoperiod. After 7 days, symptoms similar to those observed in the original fields developed on both wounded and non-wounded inoculated leaves, but not on control leaves, and S. solani was reisolated consistently from the symptoms using the same method as the original isolations. Control leaves remained asymptomatic and the fungus was not isolated from these leaves. The pathogenicity testing was repeated with similar results. To our knowledge, this is the first report of S. solani on eggplant in Malaysia. References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Curr. Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiv. Series 6:775, 2007.
    Matched MeSH terms: Photoperiod
  17. Lah RA, Benkendorff K, Bucher D
    J Therm Biol, 2017 Feb;64:100-108.
    PMID: 28166939 DOI: 10.1016/j.jtherbio.2017.01.008
    Predicted global climate change has prompted numerous studies of thermal tolerances of marine species. The upper thermal tolerance is unknown for most marine species, but will determine their vulnerability to ocean warming. Gastropods in the family Turbinidae are widely harvested for human consumption. To investigate the responses of turbinid snails to future conditions we determined critical thermal maxima (CTMax) and preferred temperatures of Turbo militaris and Lunella undulata from the tropical-temperate overlap region of northern New South Wales, on the Australian east coast. CTMax were determined at two warming rates: 1°C/30min and 1°C/12h. The number of snails that lost attachment to the tank wall was recorded at each temperature increment. At the faster rate, T. militaris had a significantly higher CTMax (34.0°C) than L. undulata (32.2°C). At the slower rate the mean of both species was lower and there was no significant difference between them (29.4°C for T. militaris and 29.6°C for L. undulata). This is consistent with differences in thermal inertia possibly allowing animals to tolerate short periods at higher temperatures than is possible during longer exposure times, but other mechanisms are not discounted. The thermoregulatory behaviour of the turban snails was determined in a horizontal thermal gradient. Both species actively sought out particular temperatures along the gradient, suggesting that behavioural responses may be important in ameliorating short-term temperature changes. The preferred temperatures of both species were higher at night (24.0°C and 26.0°C) than during the day (22.0°C and 23.9°C). As the snails approached their preferred temperature, net hourly displacement decreased. Preferred temperatures were within the average seasonal seawater temperature range in this region. However, with future predicted water temperature trends, the species could experience increased periods of thermal stress, possibly exceeding CTMax and potentially leading to range contractions.
    Matched MeSH terms: Photoperiod
  18. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727083 DOI: 10.1094/PDIS-03-12-0237-PDN
    A leaf spot on eggplant (Solanum melongena) was observed in major eggplant growing regions in Malaysia, including the Cameron Highlands and Johor State, during 2011. Disease incidence averaged approximately 30% in severely infected regions in about 150 ha of eggplant fields and greenhouses examined. Early symptoms consisted of small, circular, brown, necrotic spots uniformly distributed on leaves. The spots gradually enlarged and developed concentric rings. Eventually, the spots coalesced and caused extensive leaf senescence. A fungus was recovered consistently by plating surface-sterilized (1% NaOCl) sections of symptomatic leaf tissue onto potato dextrose agar (PDA). For conidial production, the fungus was grown on potato carrot agar (PCA) and V8 agar media under a 16-h/8-h dark/light photoperiod at 25°C (4). Fungal colonies were a dark olive color with loose, cottony mycelium. Simple conidiophores were ≤120 μm long and produced numerous conidia in long chains. Conidia averaged 20.0 × 7.5 μm and contained two to five transverse septa and the occasional longitudinal septum. Twelve isolates of the fungus were identified as Alternaria tenuissima on the basis of morphological characterization (4). Confirmation of the species identification was obtained by molecular characterization of the internal transcribed spacer (ITS) region of rDNA amplified from DNA extracted from a representative isolate using universal primers ITS4 and ITS5 (2). The 558 bp DNA band amplified was sent for direct sequencing. The sequence (GenBank Accession No. JQ736021) was subjected to BLAST analysis (1) and was 99% identical to published ITS rDNA sequences of isolates of A. tenuissima (GenBank Accession Nos. DQ323692 and AY154712). Pathogenicity tests were performed by inoculating four detached leaves from 45-day-old plants of the eggplant cv. 125066x with 20 μl drops (three drops/leaf) of a conidial suspension containing 105 conidia/ml in sterile distilled water. Four control leaves were inoculated with sterile water. Leaves inoculated with the fungus and those treated with sterile water were incubated in chambers at 25°C and 95% RH with a 12-h photoperiod/day (2). Leaf spot symptoms typical of those caused by A. tenuissima developed on leaves inoculated with the fungus 7 days after inoculation, and the fungus was consistently reisolated from these leaves. The control leaves remained asymptomatic and the pathogen was not reisolated from the leaves. The pathogenicity test was repeated with similar results. To our knowledge, this is the first report of A. tenuissima causing a leaf spot on eggplant in Malaysia. A. tenuissima has been reported to cause leaf spot and fruit rot on eggplant in India (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (3) P. Raja et al. New Disease Rep. 12:31, 2005. (4) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992.
    Matched MeSH terms: Photoperiod
  19. Salati M, Wong MY, Sariah M, Nik Masdek H
    Plant Dis, 2010 May;94(5):642.
    PMID: 30754434 DOI: 10.1094/PDIS-94-5-0642A
    In December 2008, infected leaves of Trichosanthes cucumerina were observed on commercial cucurbit farms located in Pontian, Johor (south of West Malaysia). Bright yellow and small necrotic lesions were observed on the adaxial surface of the leaves, whereas sporangiophores were observed on pale yellowish brown-to-brown lesions on the abaxial surface. The length and width of the sporangia ranged from 19 to 36 μm (28.6) and 11 to 23 μm (17.6), respectively. The length of the sporangiophores ranged from 310 to 450 μm, with an average length of 380 μm. The pathogen was identified as Pseudoperonospora cubensis on the basis of the morphological criteria described by Palti and Cohen (2). To confirm the morphological findings, DNA was extracted from symptomatic tissue and the internal transcribed spacer (ITS) region was PCR amplified using primers ITS5-P2 and ITS4 (3). The appropriate-sized amplicon was gel excised and column purified and then submitted for direct sequencing. The resulting 802 bp amplified ITS region was 100% identical to published P. cubensis sequences (GenBank Accession Nos. EU876603, EU876584, and AY198306). This sequence was deposited with NCBI GenBank under the Accession No. GU233293. In this study, pathogenicity tests were conducted using detached leaf disc assays (1) and a P. cubensis isolate obtained from T. cucumerina. For this purpose, leaf discs were excised from 6- to 8-week-old leaves of T. cucumerina using a 20-mm cork borer. Five leaf discs were placed with their abaxial surface facing upward on moist filter paper in petri dishes. Each of four leaf discs was inoculated with four 10-μl droplets of a 1 × 105 per ml sporangial suspension, whereas the fifth disc was inoculated with water droplets and served as a control. Three replications were completed. The leaf discs were placed in darkness at 14 ± 2°C for 24 h and subsequently incubated with a 12-h photoperiod. After 10 days, sporulation was observed on the sporangia-inoculated leaf discs with similar morphological features to the initial field samples. To our knowledge, this is the first report of P. cubensis causing downy mildew of T. cucumerina in Malaysia. References: (1) A. Lebeda and M. P. Widrlechner. J. Plant Dis. Prot. 110:337, 2003. (2) J. Palti and Y. Cohen. Phytoparasitica 8:109, 1980. (3) H. Voglmayr and O. Constantinescu. Mycol. Res. 112:487, 2008.
    Matched MeSH terms: Photoperiod
  20. Kitahashi T, Parhar IS
    Gen Comp Endocrinol, 2013 Jan 15;181:197-202.
    PMID: 23089246 DOI: 10.1016/j.ygcen.2012.10.003
    Kisspeptin plays an important role in the onset of puberty through stimulation of gonadotropin-releasing hormone (GnRH), a master molecule of reproduction. Furthermore, the existence of multiple kisspeptins is evident in most vertebrate species. Therefore, elucidating the regulatory mechanisms of the kisspeptin genes is important to understand the functions of multiple kisspeptin forms in the brain. This review focuses on the comparative aspects of kisspeptin gene regulation with an emphasis on the role of environmental signals including gonadal steroids, photoperiods and metabolic signals. These environmental signals differently regulate the kisspeptin genes distinctively in each species. In addition, photoperiodic regulation of the kisspeptin genes alters during sexual maturational, suggesting interactions between the gonadal hormone pathway and the photoperiod pathway. Further studies of the regulatory mechanisms of kisspeptin genes especially in teleosts which possess multiple kisspeptin/kisspeptin receptor systems will help to understand the precise role of multiple kisspeptin forms in different species.
    Matched MeSH terms: Photoperiod
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links