Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al.
    Nature, 2020 07;583(7815):286-289.
    PMID: 32380510 DOI: 10.1038/s41586-020-2313-x
    The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.
    Matched MeSH terms: Pneumonia, Viral/transmission
  2. Hasmi AH, Khoo LS, Koo ZP, Suriani MUA, Hamdan AN, Yaro SWM, et al.
    Forensic Sci Med Pathol, 2020 09;16(3):477-480.
    PMID: 32500339 DOI: 10.1007/s12024-020-00270-z
    During a disease pandemic, there is still a requirement to perform postmortem examinations within the context of legal considerations. The management of the dead from COVID-19 should not impede the medicolegal investigation of the death where required by the authorities and legislation but additional health and safety precautions should be adopted for the necessary postmortem procedures. The authors have therefore used the craniotomy box in an innovative way to enable a safe alternative for skull and brain removal procedures on suspected or confirmed COVID-19 bodies. The craniotomy box technique was tested on a confirmed COVID-19 positive body where a full postmortem examination was performed by a team of highly trained personnel in a negative pressure Biosafety Level 3 (BSL-3) autopsy suite in the National Institute of Forensic Medicine (IPFN) Malaysia. This craniotomy box is a custom-made transparent plastic box with five walls but without a floor. Two circular holes were made in one wall for the placement of arms in order to perform the skull opening procedure. A swab to detect the presence of the SARS-CoV-2 virus was taken from the interior surface of the craniotomy box after the procedure. The result from the test using real-time reverse transcriptase polymerase chain reaction (rRT-PCR) proved that an additional barrier provided respiratory protection by containing the aerosols generated from the skull opening procedure. This innovation ensures procedures performed inside this craniotomy box are safe for postmortem personnel performing high risk autopsies during pandemics.
    Matched MeSH terms: Pneumonia, Viral/transmission
  3. Chew MH, Arguin PM, Shay DK, Goh KT, Rollin PE, Shieh WJ, et al.
    J Infect Dis, 2000 May;181(5):1760-3.
    PMID: 10823780
    During 10-19 March 1999, 11 workers in 1 of 2 Singaporean abattoirs developed Nipah-virus associated encephalitis or pneumonia, resulting in 1 fatality. A case-control study was conducted to determine occupational risk factors for infection. Case patients were abattoir A workers who had anti-Nipah IgM antibodies; control subjects were randomly selected abattoir A workers who tested negative for anti-Nipah IgM. All 13 case patients versus 26 (63%) of 41 control subjects reported contact with live pigs (P=.01). Swine importation from Malaysian states concurrently experiencing a Nipah virus outbreak was banned on 3 March 1999; on 19 March 1999, importation of Malaysian pigs was banned, and abattoirs were closed. No unusual illnesses among pigs processed during February-March were reported. Contact with live pigs appeared to be the most important risk factor for human Nipah virus infection. Direct contact with live, potentially infected pigs should be minimized to prevent transmission of this potentially fatal zoonosis to humans.
    Matched MeSH terms: Pneumonia, Viral/transmission
  4. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al.
    Int J Epidemiol, 2020 06 01;49(3):717-726.
    PMID: 32086938 DOI: 10.1093/ije/dyaa033
    OBJECTIVES: To provide an overview of the three major deadly coronaviruses and identify areas for improvement of future preparedness plans, as well as provide a critical assessment of the risk factors and actionable items for stopping their spread, utilizing lessons learned from the first two deadly coronavirus outbreaks, as well as initial reports from the current novel coronavirus (COVID-19) epidemic in Wuhan, China.

    METHODS: Utilizing the Centers for Disease Control and Prevention (CDC, USA) website, and a comprehensive review of PubMed literature, we obtained information regarding clinical signs and symptoms, treatment and diagnosis, transmission methods, protection methods and risk factors for Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS) and COVID-19. Comparisons between the viruses were made.

    RESULTS: Inadequate risk assessment regarding the urgency of the situation, and limited reporting on the virus within China has, in part, led to the rapid spread of COVID-19 throughout mainland China and into proximal and distant countries. Compared with SARS and MERS, COVID-19 has spread more rapidly, due in part to increased globalization and the focus of the epidemic. Wuhan, China is a large hub connecting the North, South, East and West of China via railways and a major international airport. The availability of connecting flights, the timing of the outbreak during the Chinese (Lunar) New Year, and the massive rail transit hub located in Wuhan has enabled the virus to perforate throughout China, and eventually, globally.

    CONCLUSIONS: We conclude that we did not learn from the two prior epidemics of coronavirus and were ill-prepared to deal with the challenges the COVID-19 epidemic has posed. Future research should attempt to address the uses and implications of internet of things (IoT) technologies for mapping the spread of infection.

    Matched MeSH terms: Pneumonia, Viral/transmission
  5. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al.
    Nature, 2020 07;583(7815):282-285.
    PMID: 32218527 DOI: 10.1038/s41586-020-2169-0
    The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
    Matched MeSH terms: Pneumonia, Viral/transmission
  6. Aljabali AAA, Bakshi HA, Satija S, Metha M, Prasher P, Ennab RM, et al.
    Pharm Nanotechnol, 2020;8(4):323-353.
    PMID: 32811406 DOI: 10.2174/2211738508999200817163335
    BACKGROUND: The newly emerged coronavirus SARS-CoV-2, first reported in December 2019, has infected about five and a half million people globally and resulted in nearly 9063264 deaths until the 24th of June 2020. Nevertheless, the highly contagious virus has instigated an unimaginably rapid response from scientific and medical communities.

    OBJECTIVES: Pioneering research on molecular mechanisms underlying the viral transmission, molecular pathogenicity, and potential treatments will be highlighted in this review. The development of antiviral drugs specific to SARS-CoV-2 is a complicated and tedious process. To accelerate scientific discoveries and advancement, researchers are consolidating available data from associated coronaviruses into a single pipeline, which can be readily made available to vaccine developers.

    METHODS: In order to find studies evaluating the COVID-19 virus epidemiology, repurposed drugs and potential vaccines, web searches and bibliographical bases have been used with keywords that matches the content of this review.

    RESULTS: The published results of SARS-CoV-2 structures and interactomics have been used to identify potential therapeutic candidates. We illustrate recent publications on SARS-CoV-2, concerning its molecular, epidemiological, and clinical characteristics, and focus on innovative diagnostics technologies in the production pipeline. This objective of this review is to enhance the comprehension of the unique characteristics of SARS-CoV-2 and strengthen future control measures.

    Lay Summary: An innovative analysis is evaluating the nature of the COVID-19 pandemic. The aim is to increase knowledge of possible viral detection methods, which highlights several new technology limitations and advantages. We have assessed some drugs currently for patients (Lopinavir, Ritonavir, Anakinra and Interferon beta 1a), as the feasibility of COVID-19 specific antivirals is not presently known. The study explores the race toward vaccine development and highlights some significant trials and candidates in various clinical phases. This research addresses critical knowledge gaps by identifying repurposed drugs currently under clinical trials. Findings will be fed back rapidly to the researchers interested in COVID 19 and support the evidence and potential of possible therapeutics and small molecules with their mode of action.

    Matched MeSH terms: Pneumonia, Viral/transmission
  7. Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, et al.
    PMID: 32235575 DOI: 10.3390/ijerph17072323
    The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) outbreak has engulfed an unprepared world amidst a festive season. The zoonotic SARS-CoV-2, believed to have originated from infected bats, is the seventh member of enveloped RNA coronavirus. Specifically, the overall genome sequence of the SARS-CoV-2 is 96.2% identical to that of bat coronavirus termed BatCoV RaTG13. Although the current mortality rate of 2% is significantly lower than that of SARS (9.6%) and Middle East respiratory syndrome (MERS) (35%), SARS-CoV-2 is highly contagious and transmissible from human to human with an incubation period of up to 24 days. Some statistical studies have shown that, on average, one infected patient may lead to a subsequent 5.7 confirmed cases. Since the first reported case of coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 on December 1, 2019, in Wuhan, China, there has been a total of 60,412 confirmed cases with 1370 fatalities reported in 25 different countries as of February 13, 2020. The outbreak has led to severe impacts on social health and the economy at various levels. This paper is a review of the significant, continuous global effort that was made to respond to the outbreak in the first 75 days. Although no vaccines have been discovered yet, a series of containment measures have been implemented by various governments, especially in China, in the effort to prevent further outbreak, whilst various medical treatment approaches have been used to successfully treat infected patients. On the basis of current studies, it would appear that the combined antiviral treatment has shown the highest success rate. This review aims to critically summarize the most recent advances in understanding the coronavirus, as well as the strategies in prevention and treatment.
    Matched MeSH terms: Pneumonia, Viral/transmission
  8. Reid MJC
    Am J Primatol, 2020 08;82(8):e23161.
    PMID: 32583538 DOI: 10.1002/ajp.23161
    Year 2020 has brought the greatest global pandemic to hit the world since the end of the First World War. The severe acute respiratory syndrome coronavirus 2 and the resulting disease named coronavirus disease 2019 has brought the world to its knees both financially and medically. The American Society of Primatologists has postponed their annual meetings from the end of May 2020 until the end of September 2020, while the International Primatological Society have postponed their biennial congress from August 2020 to August 2021, which has also resulted in their 2022 meetings in Malaysia being pushed back until 2023. Here, I explore the potential dangers of pursuing any primate fieldwork during this pandemic on our study species, their ecosystems, and local peoples. I believe that the risk of bringing this virus into our study ecosystems is too great and that primatologists should cancel all field research until the pandemic ends or a vaccine/reliable treatment is widely available. This is the year we all must become One Health practitioners!
    Matched MeSH terms: Pneumonia, Viral/transmission
  9. Salman M, Mustafa ZU, Khan TM, Shehzadi N, Hussain K
    Disaster Med Public Health Prep, 2020 Jun;14(3):e44-e45.
    PMID: 32662386 DOI: 10.1017/dmp.2020.247
    Matched MeSH terms: Pneumonia, Viral/transmission
  10. Haider N, Yavlinsky A, Simons D, Osman AY, Ntoumi F, Zumla A, et al.
    Epidemiol Infect, 2020 02 26;148:e41.
    PMID: 32100667 DOI: 10.1017/S0950268820000424
    Novel Coronavirus (2019-nCoV [SARS-COV-2]) was detected in humans during the last week of December 2019 at Wuhan city in China, and caused 24 554 cases in 27 countries and territories as of 5 February 2020. The objective of this study was to estimate the risk of transmission of 2019-nCoV through human passenger air flight from four major cities of China (Wuhan, Beijing, Shanghai and Guangzhou) to the passengers' destination countries. We extracted the weekly simulated passengers' end destination data for the period of 1-31 January 2020 from FLIRT, an online air travel dataset that uses information from 800 airlines to show the direct flight and passengers' end destination. We estimated a risk index of 2019-nCoV transmission based on the number of travellers to destination countries, weighted by the number of confirmed cases of the departed city reported by the World Health Organization (WHO). We ranked each country based on the risk index in four quantiles (4th quantile being the highest risk and 1st quantile being the lowest risk). During the period, 388 287 passengers were destined for 1297 airports in 168 countries or territories across the world. The risk index of 2019-nCoV among the countries had a very high correlation with the WHO-reported confirmed cases (0.97). According to our risk score classification, of the countries that reported at least one Coronavirus-infected pneumonia (COVID-19) case as of 5 February 2020, 24 countries were in the 4th quantile of the risk index, two in the 3rd quantile, one in the 2nd quantile and none in the 1st quantile. Outside China, countries with a higher risk of 2019-nCoV transmission are Thailand, Cambodia, Malaysia, Canada and the USA, all of which reported at least one case. In pan-Europe, UK, France, Russia, Germany and Italy; in North America, USA and Canada; in Oceania, Australia had high risk, all of them reported at least one case. In Africa and South America, the risk of transmission is very low with Ethiopia, South Africa, Egypt, Mauritius and Brazil showing a similar risk of transmission compared to the risk of any of the countries where at least one case is detected. The risk of transmission on 31 January 2020 was very high in neighbouring Asian countries, followed by Europe (UK, France, Russia and Germany), Oceania (Australia) and North America (USA and Canada). Increased public health response including early case recognition, isolation of identified case, contract tracing and targeted airport screening, public awareness and vigilance of health workers will help mitigate the force of further spread to naïve countries.
    Matched MeSH terms: Pneumonia, Viral/transmission*
  11. Malik YA
    Malays J Pathol, 2020 Apr;42(1):3-11.
    PMID: 32342926
    were identified beginning with the discovery of SARS-CoV in 2002. With the recent detection of SARS-CoV-2, there are now seven human coronaviruses. Those that cause mild diseases are the 229E, OC43, NL63 and HKU1, and the pathogenic species are SARS-CoV, MERS-CoV and SARS-CoV-2 Coronaviruses (order Nidovirales, family Coronaviridae, and subfamily Orthocoronavirinae) are spherical (125nm diameter), and enveloped with club-shaped spikes on the surface giving the appearance of a solar corona. Within the helically symmetrical nucleocapsid is the large positive sense, single stranded RNA. Of the four coronavirus genera (α,β,γ,δ), human coronaviruses (HCoVs) are classified under α-CoV (HCoV-229E and NL63) and β-CoV (MERS-CoV, SARS-CoV, HCoVOC43 and HCoV-HKU1). SARS-CoV-2 is a β-CoV and shows fairly close relatedness with two bat-derived CoV-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21. Even so, its genome is similar to that of the typical CoVs. SARS-CoV and MERS-CoV originated in bats, and it appears to be so for SARS-CoV-2 as well. The possibility of an intermediate host facilitating the emergence of the virus in humans has already been shown with civet cats acting as intermediate hosts for SARS-CoVs, and dromedary camels for MERS-CoV. Human-to-human transmission is primarily achieved through close contact of respiratory droplets, direct contact with the infected individuals, or by contact with contaminated objects and surfaces. The coronaviral genome contains four major structural proteins: the spike (S), membrane (M), envelope (E) and the nucleocapsid (N) protein, all of which are encoded within the 3' end of the genome. The S protein mediates attachment of the virus to the host cell surface receptors resulting in fusion and subsequent viral entry. The M protein is the most abundant protein and defines the shape of the viral envelope. The E protein is the smallest of the major structural proteins and participates in viral assembly and budding. The N protein is the only one that binds to the RNA genome and is also involved in viral assembly and budding. Replication of coronaviruses begin with attachment and entry. Attachment of the virus to the host cell is initiated by interactions between the S protein and its specific receptor. Following receptor binding, the virus enters host cell cytosol via cleavage of S protein by a protease enzyme, followed by fusion of the viral and cellular membranes. The next step is the translation of the replicase gene from the virion genomic RNA and then translation and assembly of the viral replicase complexes. Following replication and subgenomic RNA synthesis, encapsidation occurs resulting in the formation of the mature virus. Following assembly, virions are transported to the cell surface in vesicles and released by exocytosis.
    Matched MeSH terms: Pneumonia, Viral/transmission
  12. Lu YQ
    Intern Emerg Med, 2020 Nov;15(8):1553-1554.
    PMID: 32232784 DOI: 10.1007/s11739-020-02321-3
    Matched MeSH terms: Pneumonia, Viral/transmission
  13. Ng BH, Nuratiqah NA, Faisal AH, Soo CI, Low HJ, Najma K, et al.
    Med J Malaysia, 2020 09;75(5):485-489.
    PMID: 32918414
    BACKGROUND: COVID-19 has the potential to affect the mental health of health care workers (HCWs). It is known that HCWs who serve as front-liners during the COVID-19 pandemic experience stress and have the fear of contracting the infection. Little is known of how being a positive contact affects HCWs.

    OBJECTIVE: We examined the experience of HCWs who were quarantined following a close unprotected contact with a COVID-19 positive colleague and explore the psychological impact especially as the timing of the quarantine coincided with the Eid (annual Muslim festival) celebration in Malaysia.

    METHODS: This was a cross-sectional on-line questionnaire study, involving HCWs exposed to a COVID-19 positive colleague in Universiti Kebangsaan Malaysia Medical Centre, a teaching hospital. Data on demographics, levels of depression, anxiety and stress using a validated depression, anxiety, and stress scale (DASS-21) questionnaire, aspects of quarantine, wearing of masks, hand hygiene practice and swab experience were collected.

    RESULTS: Twenty-two HCWs participated. Eighteen (81.8%) were between 30-39 years and 17 (77.3%) were women. Majority 19 (86.3%) were Malays. There were twelve (54.5%) medical officers, 5 (22.7%) specialists and 5(22.7%) allied health staff. Eighteen out of 22 (81.8%) felt they were able to do home quarantine adequately. All tested negative with a mean (Standard Deviation) hour of contact of 2.56±2.38 hours. Eighteen reported their biggest concern was infecting their families.

    CONCLUSION: HCWs undergoing contact swabbing and quarantine are vulnerable to depression, anxiety and stress. The ability of the HCW to adequately home quarantine should not be taken for granted. Psychological support should be offered to HCWs who are positive contacts.
    Matched MeSH terms: Pneumonia, Viral/transmission*
  14. Chaw L, Koh WC, Jamaludin SA, Naing L, Alikhan MF, Wong J
    Emerg Infect Dis, 2020 Nov;26(11):2598-2606.
    PMID: 33035448 DOI: 10.3201/eid2611.202263
    We report the transmission dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across different settings in Brunei. An initial cluster of SARS-CoV-2 cases arose from 19 persons who had attended the Tablighi Jama'at gathering in Malaysia, resulting in 52 locally transmitted cases. The highest nonprimary attack rates (14.8%) were observed from a subsequent religious gathering in Brunei and in households of attendees (10.6%). Household attack rates from symptomatic case-patients were higher (14.4%) than from asymptomatic (4.4%) or presymptomatic (6.1%) case-patients. Workplace and social settings had attack rates of <1%. Our analyses highlight that transmission of SARS-CoV-2 varies depending on environmental, behavioral, and host factors. We identify red flags for potential superspreading events, specifically densely populated gatherings with prolonged exposure in enclosed settings, persons with recent travel history to areas with active SARS-CoV-2 infections, and group behaviors. We propose differentiated testing strategies to account for differing transmission risk.
    Matched MeSH terms: Pneumonia, Viral/transmission
  15. Lappan S, Malaivijitnond S, Radhakrishna S, Riley EP, Ruppert N
    Am J Primatol, 2020 Aug;82(8):e23176.
    PMID: 32686188 DOI: 10.1002/ajp.23176
    The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human-primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human-primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human-primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human-primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human-primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from "business as usual." We encourage primatologists to help lead the way.
    Matched MeSH terms: Pneumonia, Viral/transmission
  16. Ghosal S, Bhattacharyya R, Majumder M
    Diabetes Metab Syndr, 2020;14(4):707-711.
    PMID: 32426062 DOI: 10.1016/j.dsx.2020.05.026
    INTRODUCTION AND AIMS: Retarding the spread of SARS-CoV-2 infection by preventive strategies is the first line of management. Several countries have declared a stringent lockdown in order to enforce social distancing and prevent the spread of infection. This analysis was conducted in an attempt to understand the impact of lockdown on infection and death rates over a period of time in countries with declared lock-down.

    MATERIAL AND METHODS: A validated database was used to generate data related to countries with declared lockdown. Simple regression analysis was conducted to assess the rate of change in infection and death rates. Subsequently, a k-means and hierarchical cluster analysis was done to identify the countries that performed similarly. Sweden and South Korea were included as counties without lockdown in a second-phase cluster analysis.

    RESULTS: There was a significant 61% and 43% reduction in infection rates 1-week post lockdown in the overall and India cohorts, respectively, supporting its effectiveness. Countries with higher baseline infections and deaths (Spain, Germany, Italy, UK, and France-cluster 1) fared poorly compared to those who declared lockdown early on (Belgium, Austria, New Zealand, India, Hungary, Poland and Malaysia-cluster 2). Sweden and South Korea, countries without lock-down, fared as good as the countries in cluster 2.

    CONCLUSION: Lockdown has proven to be an effective strategy is slowing down the SARS-CoV-2 disease progression (infection rate and death) exponentially. The success story of non-lock-down countries (Sweden and South Korea) need to be explored in detail, to identify the variables responsible for the positive results.

    Matched MeSH terms: Pneumonia, Viral/transmission
  17. Abir T, Kalimullah NA, Osuagwu UL, Yazdani DMN, Mamun AA, Husain T, et al.
    Int J Environ Res Public Health, 2020 Jul 21;17(14).
    PMID: 32708161 DOI: 10.3390/ijerph17145252
    This study investigated the perception and awareness of risk among adult participants in Bangladesh about Coronavirus Disease 2019 (COVID-19). During the lockdown era in Bangladesh at two different time points, from 26-31 March 2020 (early lockdown) and 11-16 May 2020 (late lockdown), two self-administered online surveys were conducted on 1005 respondents (322 and 683 participants, respectively) via social media. To examine risk perception and knowledge-related factors towards COVID-19, univariate and multiple linear regression models were employed. Scores of mean knowledge (8.4 vs. 8.1, p = 0.022) and perception of risk (11.2 vs. 10.6, p < 0.001) differed significantly between early and late lockdown. There was a significant decrease in perceived risk scores for contracting SARS-Cov-2 [β = -0.85, 95%CI: -1.31, -0.39], while knowledge about SARS-Cov-2 decreased insignificantly [β = -0.22, 95%CI: -0.46, 0.03] in late lockdown compared with early lockdown period. Self-quarantine was a common factor linked to increased perceived risks and knowledge of SARS-Cov-2 during the lockdown period. Any effort to increase public awareness and comprehension of SARS-Cov-2 in Bangladesh will then offer preference to males, who did not practice self-quarantine and are less worried about the propagation of this kind of virus.
    Matched MeSH terms: Pneumonia, Viral/transmission
  18. Mohamed K, Rodríguez-Román E, Rahmani F, Zhang H, Ivanovska M, Makka SA, et al.
    Infect Control Hosp Epidemiol, 2020 Oct;41(10):1245-1246.
    PMID: 32319878 DOI: 10.1017/ice.2020.162
    Matched MeSH terms: Pneumonia, Viral/transmission
  19. Garba B, Zakaria Z, Salihu MD, Bande F, Saidu B, Bala JA
    J Glob Health, 2020 Dec;10(2):020309.
    PMID: 33110513 DOI: 10.7189/jogh.10.020309
    Matched MeSH terms: Pneumonia, Viral/transmission
  20. Musa TH, El Bingawi HM, Musa IH, Mohammed LA, Arbab MA, Musa HH
    Med J Malaysia, 2020 07;75(4):403-405.
    PMID: 32724003
    No abstract provided.
    Matched MeSH terms: Pneumonia, Viral/transmission
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links