Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Alebraheem J, Abu-Hassan Y
    J Math Biol, 2023 Apr 27;86(5):84.
    PMID: 37103566 DOI: 10.1007/s00285-023-01914-8
    A characteristic of ecosystems is the existence of manifold of independencies which are highly complex. Various mathematical models have made considerable contributions in gaining a better understanding of the predator-prey interactions. The main components of any predator-prey models are, firstly, how the different population classes grow and secondly, how the prey and predator interacts. In this paper, the two populations' growth rates obey the logistic law and the carrying capacity of the predator depends on the available number of prey are considered. Our aim is to clarify the relationship between models and Holling types functional and numerical responses in order to gain insights into predator interferences and to answer an important question how competition is carried out. We consider a predator-prey model and a two-predator one-prey model to explain the idea. The novel approach is explained for the mechanism measurement of predator interference through depending on numerical response. Our approach gives good correspondence between an important real data and computer simulations.
    Matched MeSH terms: Predatory Behavior
  2. Evans LJ, Davies AB, Goossens B, Asner GP
    PLoS One, 2017;12(10):e0184804.
    PMID: 29020111 DOI: 10.1371/journal.pone.0184804
    Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile's actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR) and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus) throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict.
    Matched MeSH terms: Predatory Behavior/physiology*
  3. Ali AH, Asokan S
    Trop Life Sci Res, 2015 Apr;26(1):9-20.
    PMID: 26868589
    The diurnal time-activity patterns of the Small Bee-eater (Merops orientalis) were studied between 2005 and 2006 in the Nagapattinam District of Southern India. Bee-eaters were observed to spend an average of 52.5% of their day time scanning, 21.3% feeding, 13.3% flying, 8.8% resting and 4.1% engaging in preening activities. The time spent on scanning varied among seasons in 2005 (p<0.05) and among time blocks (p<0.05), but it did not vary among years or habitats (p>0.05). The feeding patterns differed among years, seasons within years, time blocks and habitats (p<0.05). The flying habits varied among years, time blocks and habitats (p<0.05) but did not change between seasons within years (p>0.05). The resting habits differed among years and habitats (p<0.05) but did not differ among seasons within years or time blocks (p>0.05). Preening differed among years and time blocks (p<0.05) but did not vary among seasons within years or habitats (p>0.05). We conclude that several factors, such as food availability, environmental factors and predation threats, may affect the diurnal activity patterns of Bee-eaters between habitats and seasons; a further study could clarify this conclusion.
    Matched MeSH terms: Predatory Behavior
  4. Jamian S, Norhisham A, Ghazali A, Zakaria A, Azhar B
    Insect Sci, 2017 Apr;24(2):285-294.
    PMID: 26712127 DOI: 10.1111/1744-7917.12309
    Integrated pest management (IPM) is widely practiced in commercial oil palm agriculture. This management system is intended to minimize the number of attacks by pest insects such as bagworms on crops, as well as curb economic loss with less dependency on chemical pesticides. One practice in IPM is the use of biological control agents such as predatory insects. In this study, we assessed the response of predatory natural enemies to pest outbreak and water stress, and document the habitat associations of potential pest predators. The abundances of 2 predatory insect species, namely Sycanus dichotomus and Cosmolestes picticeps (Hemiptera: Reduviidae), were compared bagworm outbreak sites and nonoutbreak sites within oil palm plantations. We also examined habitat characteristics that influence the abundances of both predatory species. We found that the abundance of C. picticeps was significantly higher in bagworm outbreak sites than in nonoutbreak sites. There were no significant differences in the abundance of S. dichotomus among outbreak and non-outbreak sites. Both species responded negatively to water stress in oil palm plantations. Concerning the relationship between predatory insect abundance and in situ habitat quality characteristics, our models explained 46.36% of variation for C. picticeps and 23.17% of variation for S. dichotomus. Both species of predatory insects thrived from the planting of multiple beneficial plants in oil palm plantations. The results suggest that C. picticeps can be used as a biological agent to control bagworm populations in oil palm plantations, but S. dichotomus has no or little potential for such ecosystem service.
    Matched MeSH terms: Predatory Behavior
  5. Heo CC, Mohamad AM, John J, Baharudin O
    Trop Biomed, 2008 Apr;25(1):93-5.
    PMID: 18600210 MyJurnal
    During a forensic entomological study conducted in a palm oil plantation in Tg.Sepat, Selangor in September 2007, a spider (Arachnida), Oxyopes sp. (Oxyopidae) was found to predate on a calliphorid fly (Chrysomya rufifacies). The female spider laid a silk thread, or "drag line", behind it as it moved. This spider bites its prey by using a pairs of chelicerae, and injecting venom into the fly. The fly was moving its wing trying to escape, however, it succumbed to the deadly bite.
    Matched MeSH terms: Predatory Behavior*
  6. Anbu P, Murugan K, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Sep;30(18):2077-84.
    PMID: 26679526 DOI: 10.1080/14786419.2015.1114935
    The impact of green-synthesised mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of Melia azedarach. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on Anopheles stephensi, Ag NP showed LC50 ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10 × LC50) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy Cyclops vernalis. Overall, this study highlights the concrete possibility to employ M. azedarach-synthesised Ag NP on young instars of malaria vectors.
    Matched MeSH terms: Predatory Behavior/drug effects
  7. Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Apr;30(7):826-33.
    PMID: 26284510 DOI: 10.1080/14786419.2015.1074230
    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs.
    Matched MeSH terms: Predatory Behavior
  8. Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10504-10514.
    PMID: 28988379 DOI: 10.1007/s11356-017-0313-7
    The control of filariasis vectors has been enhanced in several areas, but there are main challenges, including increasing resistance to insecticides and lack of cheap and eco-friendly products. The toxicity of iron (Fe0) and iron oxide (Fe2O3) nanoparticles has been scarcely investigated yet. We studied the larvicidal and pupicidal activity of Fe0 and Fe2O3 nanoparticles against Culex quinquefasciatus. Fe0 and Fe2O3 nanoparticles produced by green (using a Ficus natalensis aqueous extract) and chemical nanosynthesis, respectively, were analyzed by UV-Vis spectrophotometry, FT-IR spectroscopy, XRD analysis, SEM, and EDX assays. In larvicidal and pupicidal experiments on Cx. quinquefasciatus, LC50 of Fe0 nanoparticles ranged from 20.9 (I instar larvae) to 43.7 ppm (pupae) and from 4.5 (I) to 22.1 ppm (pupae) for Fe2O3 nanoparticles synthesized chemically. Furthermore, the predation efficiency of the guppy fish, Poecilia reticulata, after a single treatment with sub-lethal doses of Fe0 and Fe2O3 nanoparticles was magnified. Overall, this work provides new insights about the toxicity of Fe0 and Fe2O3 nanoparticles against mosquito vectors; we suggested that green and chemical fabricated nano-iron may be considered to develop novel and effective pesticides.
    Matched MeSH terms: Predatory Behavior
  9. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):20067-83.
    PMID: 26300364 DOI: 10.1007/s11356-015-5253-5
    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.
    Matched MeSH terms: Predatory Behavior
  10. Ito F, Hashim R, Huei YS, Kaufmann E, Akino T, Billen J
    Naturwissenschaften, 2004 Oct;91(10):481-4.
    PMID: 15729761
    The mechanism by which palatable species take advantage of their similarity in appearance to those that are unpalatable, in order to avoid predation, is called Batesian mimicry. Several arthropods are thought to be Batesian mimics of social insects; however, social insects that are Batesian mimics among themselves are rare. In Malaysia we found a possible Batesian mimic in an arboreal ant species, Camponotus sp., which was exclusively observed on foraging trails of the myrmicine ant Crematogaster inflata. The bright yellow and black colouring pattern, as well as the walking behaviour, were very similar in both species. We observed general interactions between the two species, and tested their palatability and the significance of the remarkably similar visual colour patterns for predator avoidance. Prey offered to C. inflata was also eaten by Camponotus workers in spite of their being attacked by C. inflata, indicating that Camponotus sp. is a commensal of C. inflata. An experiment with chicks as potential predators suggests that Camponotus sp. is palatable whereas C. inflata is unpalatable. After tasting C. inflata, the chicks no longer attacked Camponotus sp., indicating that Camponotus sp. is a Batesian mimic of Crematogaster inflata.
    Matched MeSH terms: Predatory Behavior
  11. Williams PJ, Brodie JF
    Conserv Biol, 2023 Apr;37(2):e14014.
    PMID: 36178021 DOI: 10.1111/cobi.14014
    The loss of large animals due to overhunting and habitat loss potentially affects tropical tree populations and carbon cycling. Trees reliant on large-bodied seed dispersers are thought to be particularly negatively affected by defaunation. But besides seed dispersal, defaunation can also increase or decrease seed predation. It remains unclear how these different defaunation effects on early life stages ultimately affect tree population dynamics. We reviewed the literature on how tropical animal loss affects different plant life stages, and we conducted a meta-analysis of how defaunation affects seed predation. We used this information to parameterize models that altered matrix projection models from a suite of tree species to simulate defaunation-caused changes in seed dispersal and predation. We assessed how applying these defaunation effects affected population growth rates. On average, population-level effects of defaunation were negligible, suggesting that defaunation may not cause the massive reductions in forest carbon storage that have been predicted. In contrast to previous hypotheses, we did not detect an effect of seed size on changes in seed predation rates. The change in seed predation did not differ significantly between exclosure experiments and observational studies, although the results of observational studies were far more variable. Although defaunation surely affects certain tree taxa, species that benefit or are harmed by it and net changes in forest carbon storage cannot currently be predicted based on available data. Further research on how factors such as seed predation vary across tree species and defaunation scenarios is necessary for understanding cascading changes in species composition and diversity.
    Matched MeSH terms: Predatory Behavior
  12. Wang XQ, Wang GH, Zhu ZR, Tang QY, Hu Y, Qiao F, et al.
    Pest Manag Sci, 2017 Jun;73(6):1277-1286.
    PMID: 27739189 DOI: 10.1002/ps.4459
    BACKGROUND: Spiders are effective biological control agents in rice ecosystems, but the comparative study of predations among main spider species under field conditions has not been fully explored owing to a lack of practical methodology. In this study, more than 6000 spiders of dominant species were collected from subtropical rice ecosystems to compare their predations on Sogatella furcifera (Horváth) (white-backed planthopper, WBPH) using DNA-based gut content analysis.

    RESULTS: The positive rates for all spider taxa were closely related to prey densities, as well as their behaviors and niches. The relationships of positive rates to prey planthopper densities for Pardosa pseudoannulata (Böes. et Str.), Coleosoma octomaculata (Böes. et Str.), Tetragnatha maxillosa Thorell and Ummeliata insecticeps (Böes. et Str.) under field conditions could be described using saturated response curves. Quantitative comparisons of predations among the four spider species confirmed that P. pseudoannulata and C. octomaculata were more rapacious than U. insecticeps and T. maxillosa under field conditions. A comparison of ratio of spiders to WBPH and positive rates between fields revealed that biological control by spiders could be effectively integrated with variety resistance.

    CONCLUSION: Generalist spiders could follow up WBPH population timely, and assemblages of spiders coupled with variety resistance could effectively suppress WBPH population. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Predatory Behavior
  13. Ord TJ, Blazek K, White TE, Das I
    Proc Biol Sci, 2021 Jun 09;288(1952):20210706.
    PMID: 34102889 DOI: 10.1098/rspb.2021.0706
    Social animals are expected to face a trade-off between producing a signal that is detectible by mates and rivals, but not obvious to predators. This trade-off is fundamental for understanding the design of many animal signals, and is often the lens through which the evolution of alternative communication strategies is viewed. We have a reasonable working knowledge of how conspecifics detect signals under different conditions, but how predators exploit conspicuous communication of prey is complex and hard to predict. We quantified predation on 1566 robotic lizard prey that performed a conspicuous visual display, possessed a conspicuous ornament or remained cryptic. Attacks by free-ranging predators were consistent across two contrasting ecosystems and showed robotic prey that performed a conspicuous display were equally likely to be attacked as those that remained cryptic. Furthermore, predators avoided attacking robotic prey with a fixed, highly visible ornament that was novel at both locations. These data show that it is prey familiarity-not conspicuousness-that determine predation risk. These findings replicated across different predator-prey communities not only reveal how conspicuous signals might evolve in high predation environments, but could help resolve the paradox of aposematism and why some exotic species avoid predation when invading new areas.
    Matched MeSH terms: Predatory Behavior
  14. Luczkovich JJ, Borgatti SP, Johnson JC, Everett MG
    J Theor Biol, 2003 Feb 07;220(3):303-21.
    PMID: 12468282
    We present a graph theoretic model of analysing food web structure called regular equivalence. Regular equivalence is a method for partitioning the species in a food web into "isotrophic classes" that play the same structural roles, even if they are not directly consuming the same prey or if they do not share the same predators. We contrast regular equivalence models, in which two species are members of the same trophic group if they have trophic links to the same set of other trophic groups, with structural equivalence models, in which species are equivalent if they are connected to the exact same other species. Here, the regular equivalence approach is applied to two published food webs: (1) a topological web (Malaysian pitcher plant insect food web) and (2) a carbon-flow web (St. Marks, Florida seagrass ecosystem food web). Regular equivalence produced a more satisfactory set of classes than did the structural approach, grouping basal taxa with other basal taxa and not with top predators. Regular equivalence models provide a way to mathematically formalize trophic position, trophic group and trophic niche. These models are part of a family of models that includes structural models used extensively by ecologists now. Regular equivalence models uncover similarities in trophic roles at a higher level of organization than do the structural models. The approach outlined is useful for measuring the trophic roles of species in food web models, measuring similarity in trophic relations of two or more species, comparing food webs over time and across geographic regions, and aggregating taxa into trophic groups that reduce the complexity of ecosystem feeding relations without obscuring network relationships. In addition, we hope the approach will prove useful in predicting the outcome of predator-prey interactions in experimental studies.
    Matched MeSH terms: Predatory Behavior
  15. Tuma J, Eggleton P, Fayle TM
    Biol Rev Camb Philos Soc, 2020 06;95(3):555-572.
    PMID: 31876057 DOI: 10.1111/brv.12577
    Animal interactions play an important role in understanding ecological processes. The nature and intensity of these interactions can shape the impacts of organisms on their environment. Because ants and termites, with their high biomass and range of ecological functions, have considerable effects on their environment, the interaction between them is important for ecosystem processes. Although the manner in which ants and termites interact is becoming increasingly well studied, there has been no synthesis to date of the available literature. Here we review and synthesise all existing literature on ant-termite interactions. We infer that ant predation on termites is the most important, most widespread, and most studied type of interaction. Predatory ant species can regulate termite populations and subsequently slow down the decomposition of wood, litter and soil organic matter. As a consequence they also affect plant growth and distribution, nutrient cycling and nutrient availability. Although some ant species are specialised termite predators, there is probably a high level of opportunistic predation by generalist ant species, and hence their impact on ecosystem processes that termites are known to provide varies at the species level. The most fruitful future research direction will be to evaluate the impact of ant-termite predation on broader ecosystem processes. To do this it will be necessary to quantify the efficacy both of particular ant species and of ant communities as a whole in regulating termite populations in different biomes. We envisage that this work will require a combination of methods, including DNA barcoding of ant gut contents along with field observations and exclusion experiments. Such a combined approach is necessary for assessing how this interaction influences entire ecosystems.
    Matched MeSH terms: Predatory Behavior
  16. Widihastuty, Tobing MC, Marheni, Kuswardani RA, Fudholi A
    J Insect Physiol, 2020 07 17;125:104089.
    PMID: 32687849 DOI: 10.1016/j.jinsphys.2020.104089
    Ants are social insects with some significant roles in the ecosystem, including acting as predators for various insect pests. Myopopone castanea ants is a predatorfor the larvae of Oryctes rhinoceros pest. The existence of a similar niche of life between M. castanea ants and O. rhinoceros larvae opens an excellent opportunity to utilize these ants as biological agents. The research was conducted to study some aspects biology of M. castanea so that later it can be applied to mass rearing of natural enemies in the laboratory. The study was conducted by maintaining 50 eggs of M. castanea ant. Then, the eggs placed on two pieces of decayed palm oil stem together with twenty individual worker ants and ten individual end instar larvae. It needs five replications for the experiment. The results showed that egg stadia length was 13.8 days. It found five instars within M. castanea ant larvae with varying lengths of each stage. It takes 17.2 days for worker ant pupae to go through stadia pupa and 17.9 days for female ant pupae. The survival rate of M. castanea ant life from eggs until imago is 56.4%, which means that from several groups of eggs laid by queen ants, only about half have succeeded in becoming ant imago.
    Matched MeSH terms: Predatory Behavior
  17. Matsuda I, Kubo T, Tuuga A, Higashi S
    Am. J. Phys. Anthropol., 2010 Jun;142(2):235-45.
    PMID: 20091847 DOI: 10.1002/ajpa.21218
    To understand the effects of environmental factors on a social system with multilevel society in proboscis monkey units, the temporal change of the local density of sleeping sites of monkeys was investigated along the Menanggul river from May 2005 to 2006 in Malaysia. Proboscis monkeys typically return to riverside trees for night sleeping. The sleeping site locations of a one-male unit (BE-unit) were recorded and the locations of other one-male and all-male units within 500 m of the BE-unit were verified. In addition, environmental factors (food availability, the water level of the river, and the river width) and copulation frequency of BE-unit were recorded. From the analyses of the distance from the BE-unit to the nearest neighbor unit, no spatial clumping of the sleeping sites of monkey units on a smaller scale was detected. The results of a Bayesian analysis suggest that the conditional local density around the BE-unit can be predicted by the spatial heterogeneity along the river and by the temporal change of food availability, that is, the local density of monkey units might increase due to better sleeping sites with regard to predator attacks and clumped food sources; proboscis monkeys might not exhibit high-level social organization previously reported. In addition, this study shows the importance of data analysis that considers the effects of temporal autocorrelation, because the daily measurements of longitudinal data on monkeys are not independent of each other.
    Matched MeSH terms: Predatory Behavior
  18. Matsuda I, Tuuga A, Higashi S
    Primates, 2008 Jul;49(3):227-31.
    PMID: 18484152 DOI: 10.1007/s10329-008-0085-2
    In this study, we have reported two direct observations of individuals from a one-male group of proboscis monkeys (Nasalis larvatus) being killed by clouded leopards (Neofelis diardi) in the riverine forest along the Menanggul river, a tributary of the Kinabatangan river in Sabah, Malaysia. One of the two individuals was an infant female and the other was a juvenile female. Based on literature reviews and the observations reported here, we suggest that clouded leopard and crocodile might be significant potential predators of proboscis monkeys of any age or sex and that predation threats elicit the monkeys' anti-predator strategies. Moreover, the observations of the monkeys' behaviour when the group is attacked by a predator suggest that the adult males in one-male groups play an important role as protectors.
    Matched MeSH terms: Predatory Behavior*
  19. Matsuda I, Tuuga A, Akiyama Y, Higashi S
    Am J Primatol, 2008 Nov;70(11):1097-101.
    PMID: 18651612 DOI: 10.1002/ajp.20604
    From May 2005-2006, selections of river crossing locations and sleeping sites used by a one-male group (BE-Group) of proboscis monkeys (Nasalis larvatus) were investigated along the Menanggul River, tributary of the Kinabatangan River, Sabah, Malaysia. The frequency of river crossings for focal monkeys in the BE-Group was significantly higher at locations with narrow branch-to-bank distances. Branch-to-bank distances were defined as the distances between the longest tree branches extending over the river and the bank of river on each side. This was measured in areas crossed by the monkeys. The focal monkeys used locations with a higher probability of successful river crossings that did not require jumping into the water and swimming across than those that did. The frequency of sleeping site usage by the BE-Group was positively correlated with the frequency of using river crossing locations by the focal monkeys. Previous reports on predation of proboscis monkeys indicate that clouded leopards (Neofelis diardi) and crocodilians (Tomistoma schlegeli and Crocodylus porosus) may be the major terrestrial and aquatic predators of these monkeys. The selection of river crossing locations by proboscis monkeys may be influenced both by the threat of these predators and the location of suitable and protected sleeping sites. Finally, sleeping sites locations that offer arboreal escape routes may protect proboscis monkeys from leopard attack.
    Matched MeSH terms: Predatory Behavior
  20. Hashimoto Y, Endo T, Yamasaki T, Hyodo F, Itioka T
    Sci Rep, 2020 10 26;10(1):18279.
    PMID: 33106531 DOI: 10.1038/s41598-020-75010-y
    Accurate morphological ant mimicry by Myrmarachne jumping spiders confers strong protective benefits against predators. However, it has been hypothesized that the slender and constricted ant-like appearance imposes costs on the hunting ability because their jumping power to capture prey is obtained from hydraulic pressure in their bodies. This hypothesis remains to be sufficiently investigated. We compared the jumping and prey-capture abilities of seven Myrmarachne species and non-myrmecomorphic salticids collected from tropical forests in Malaysian Borneo and northeastern Thailand. We found that the mimics had significantly reduced abilities compared with the non-mimics. The analysis using geometric morphometric techniques revealed that the reduced abilities were strongly associated with the morphological traits for ant mimicry and relatively lower abilities were found in Myrmarachne species with a more narrowed form. These results support the hypothesis that the jumping ability to capture prey is constrained by the morphological mimicry and provide a new insight into understanding the evolutionary costs of accurate mimicry.
    Matched MeSH terms: Predatory Behavior/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links