Displaying publications 1 - 20 of 362 in total

Abstract:
Sort:
  1. Trusch F, Loebach L, Wawra S, Durward E, Wuensch A, Iberahim NA, et al.
    Nat Commun, 2018 06 14;9(1):2347.
    PMID: 29904064 DOI: 10.1038/s41467-018-04796-3
    The animal-pathogenic oomycete Saprolegnia parasitica causes serious losses in aquaculture by infecting and killing freshwater fish. Like plant-pathogenic oomycetes, S. parasitica employs similar infection structures and secretes effector proteins that translocate into host cells to manipulate the host. Here, we show that the host-targeting protein SpHtp3 enters fish cells in a pathogen-independent manner. This uptake process is guided by a gp96-like receptor and can be inhibited by supramolecular tweezers. The C-terminus of SpHtp3 (containing the amino acid sequence YKARK), and not the N-terminal RxLR motif, is responsible for the uptake into host cells. Following translocation, SpHtp3 is released from vesicles into the cytoplasm by another host-targeting protein where it degrades nucleic acids. The effector translocation mechanism described here, is potentially also relevant for other pathogen-host interactions as gp96 is found in both animals and plants.
    Matched MeSH terms: Recombinant Proteins/chemistry
  2. Negrier C, Young G, Abdul Karim F, Collins PW, Hanabusa H, Colberg T, et al.
    Haemophilia, 2016 Jul;22(4):507-13.
    PMID: 26936227 DOI: 10.1111/hae.12902
    BACKGROUND: The paradigm(™) 2 and 4 phase 3 clinical trials investigated the safety and efficacy of nonacog beta pegol, a recombinant glycoPEGylated factor IX (FIX) with extended half-life, in previously treated haemophilia B patients.

    AIM: These post hoc analyses investigated the bleeding patterns in target joints.

    METHODS: Patients randomized to 40 or 10 IU kg(-1) once weekly prophylaxis who had at least one target joint were included. Baseline demographics and disease-specific data were collected. Bleeding patterns were assessed, and an International Society on Thrombosis and Haemostasis (ISTH) definition of target joints was used.

    RESULTS: A total of 67% and 8% of patients in the 40 and 10 IU kg(-1) arm, respectively, did not experience target joint bleeds during the paradigm(™) 2 trial. Twenty-four target joints were recorded in each prophylaxis arm at baseline. During the paradigm(™) 2 trial, no bleeds were reported in 17 (71%) and 7 (29%) target joints in the 40 and 10 IU kg(-1) arms respectively. All target joint bleeds in the 40 IU kg(-1) once weekly prophylaxis arm were controlled with a single injection of 40 IU kg(-1) nonacog beta pegol. By the latest ISTH definition, 90% and 58% of target joints in the 40 and 10 IU kg(-1) arms, respectively, were no longer considered target joints at the end of the paradigm(™) 2 trial. At the end of the paradigm(™) 4 extension trial, all target joints in the 40 IU kg(-1) arm were no longer considered target joints.

    CONCLUSION: Routine prophylaxis with 40 IU kg(-1) once weekly nonacog beta pegol has the potential for effective management of target joint bleeds in haemophilia B patients.

    Matched MeSH terms: Recombinant Proteins/therapeutic use
  3. Collins PW, Young G, Knobe K, Karim FA, Angchaisuksiri P, Banner C, et al.
    Blood, 2014 Dec 18;124(26):3880-6.
    PMID: 25261199 DOI: 10.1182/blood-2014-05-573055
    This multinational, randomized, single-blind trial investigated the safety and efficacy of nonacog beta pegol, a recombinant glycoPEGylated factor IX (FIX) with extended half-life, in 74 previously treated patients with hemophilia B (FIX activity ≤2 IU/dL). Patients received prophylaxis for 52 weeks, randomized to either 10 IU/kg or 40 IU/kg once weekly or to on-demand treatment of 28 weeks. No patients developed inhibitors, and no safety concerns were identified. Three hundred forty-five bleeding episodes were treated, with an estimated success rate of 92.2%. The median annualized bleeding rates (ABRs) were 1.04 in the 40 IU/kg prophylaxis group, 2.93 in the 10 IU/kg prophylaxis group, and 15.58 in the on-demand treatment group. In the 40 IU/kg group, 10 (66.7%) of 15 patients experienced no bleeding episodes into target joints compared with 1 (7.7%) of 13 patients in the 10 IU/kg group. Health-related quality of life (HR-QoL) assessed with the EuroQoL-5 Dimensions visual analog scale score improved from a median of 75 to 90 in the 40 IU/kg prophylaxis group. Nonacog beta pegol was well tolerated and efficacious for the treatment of bleeding episodes and was associated with low ABRs in patients receiving prophylaxis. Once-weekly prophylaxis with 40 IU/kg resolved target joint bleeds in 66.7% of the affected patients and improved HR-QoL. This trial was registered at www.clinicaltrials.gov as #NCT01333111.
    Matched MeSH terms: Recombinant Proteins/administration & dosage*
  4. Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, et al.
    J Thromb Haemost, 2015 Nov;13(11):1989-98.
    PMID: 26362483 DOI: 10.1111/jth.13141
    BACKGROUND: Vatreptacog alfa, a recombinant human factor VIIa (rFVIIa) analog developed to improve the treatment of bleeds in hemophilia patients with inhibitors, differs from native FVIIa by three amino acid substitutions. In a randomized, double-blind, crossover, confirmatory phase III trial (adept(™) 2), 8/72 (11%) hemophilia A or B patients with inhibitors treated for acute bleeds developed anti-drug antibodies (ADAs) to vatreptacog alfa.

    OBJECTIVES: To characterize the formation of anti-vatreptacog alfa ADAs in hemophilia patients with inhibitors.

    METHODS/PATIENTS: This was a post hoc analysis of adept(™) 2. Immunoglobulin isotype determination, specificity analysis of rFVIIa cross-reactive antibodies, epitope mapping of rFVIIa single mutant analogs and pharmacokinetic (PK) profiling were performed to characterize the ADAs.

    RESULTS: Immunoglobulin isotyping indicated that the ADAs were of the immunoglobulin G subtype. In epitope mapping, none of the rFVIIa single mutant analogs (V158D, E296V or M298Q) contained the complete antibody epitope, confirming that the antibodies were specific for vatreptacog alfa. In two patients, for whom PK profiling was performed both before and after the development of ADAs, vatreptacog alfa showed a prolonged elimination phase following ADA development. During the follow-up evaluation, the rFVIIa cross-reactivity disappeared after the last vatreptacog alfa exposure, despite continued exposure to rFVIIa as part of standard care.

    CONCLUSIONS: Results from the vatreptacog alfa phase III trial demonstrate that the specific changes made, albeit relatively small, to the FVIIa molecule alter its clinical immunogenicity.

    Matched MeSH terms: Recombinant Proteins/genetics; Recombinant Proteins/immunology; Recombinant Proteins/pharmacokinetics; Recombinant Proteins/chemistry
  5. Fong MY, Lau YL, Zulqarnain M
    Biotechnol Lett, 2008 Apr;30(4):611-8.
    PMID: 18043869
    The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.
    Matched MeSH terms: Recombinant Proteins/immunology; Recombinant Proteins/metabolism*
  6. Wong SK, Tan WS, Omar AR, Tan CS, Yusoff K
    Acta Virol., 2009;53(1):35-41.
    PMID: 19301949
    Hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays a vital role in the viral infectivity, host immunity, and disease diagnosis. A portion of the HN gene encoding the ectodomain (nt 142-1739) was cloned and expressed in Escherichia coli yielding an insoluble HN protein and a soluble NusA-HN protein containing N-utilization substance A (NusA) fusion component. Both recombinant proteins were purified and used for immunization of chickens. The recombinant HN protein induced higher antibody titers as compared to the recombinant NusA-HN protein. These antibodies were able to react in immunoblot analysis with the corresponding recombinant proteins as well as with the HN protein of NDV.
    Matched MeSH terms: Recombinant Proteins/immunology
  7. Ong ST, Tan WS, Hassan SS, Mohd Lila MA, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Oct;6(5):347-50.
    PMID: 12385971
    The coding region of the nucleocapsid (N) gene was amplified from the viral RNA and inserted into the bacterial expression vector, pTrcHis2, for intracellular expression in three Escherichia coli strains: TOP 10, BL 21 and SG 935. The N protein was expressed as a fusion protein containing the myc epitope and His-tag at its C-terminal end. The amount of the fusion protein expressed in strain SG 935 was significantly higher than the other two strains, and was detected by the anti-myc antibody, anti-His and swine anti-NiV serum. Hence, the N(fus) protein produced in E. coli could serve as an alternative antigen for the detection of anti-NiV in swine.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  8. Kho CL, Tan WS, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):117-21.
    PMID: 12186767
    The phosphoprotein (P) gene of a heat stable Newcastle disease virus (NDV) was cloned, sequenced and expressed in Escherichia coli. SDS-PAGE analysis of the recombinant P protein (395 amino acids) and a C-terminal extension derivative (424 amino acids), gave rise to two distinct protein bands with molecular masses of approximately 53-55 and 56-58 kDa, respectively, which are approximately 26-30% heavier than those calculated from the deduced amino acid sequences. The differences in molecular mass on SDS-PAGE are thought to be attributed to the acidic nature of the P protein (pI=6.27) and also the different degrees of phosphorylation in the prokaryotic cell. Amino acid sequence comparison of the P protein among the published NDV strains showed that they were highly conserved particularly at the putative phosphorylation sites.
    Matched MeSH terms: Recombinant Proteins/biosynthesis; Recombinant Proteins/genetics; Recombinant Proteins/chemistry
  9. Tan WS, Ong ST, Eshaghi M, Foo SS, Yusoff K
    J Med Virol, 2004 May;73(1):105-12.
    PMID: 15042656
    The nucleocapsid (N) protein of Nipah virus (NiV) can be produced in three Escherichia coli strains [TOP10, BL21(DE3) and SG935] under the control of trc promoter. However, most of the product existed in the form of insoluble inclusion bodies. There was no improvement in the solubility of the product when this protein was placed under the control of T7 promoter. However, the solubility of the N protein was significantly improved by lowering the growth temperature of E. coli BL21(DE3) cell cultures. Solubility analysis of N- and C-terminally deleted mutants revealed that the full-length N protein has the highest solubility. The soluble N protein could be purified efficiently by sucrose gradient centrifugation and nickel affinity chromatography. Electron microscopic analysis of the purified product revealed that the N protein assembled into herringbone-like particles of different lengths. The C-terminal end of the N protein contains the major antigenic region when probed with antisera from humans and pigs infected naturally.
    Matched MeSH terms: Recombinant Proteins/genetics; Recombinant Proteins/immunology; Recombinant Proteins/chemistry
  10. Eshaghi M, Tan WS, Mohidin TB, Yusoff K
    Virus Res, 2004 Nov;106(1):71-6.
    PMID: 15522449
    A method for serological diagnosis of Nipah virus (NiV) is described. DNA encoding truncated G protein of NiV was cloned into the pFastBac HT vector, and the fusion protein to His-tag was expressed in insect cells by recombinant baculovirus. The resulting His-G recombinant fusion protein was purified by affinity chromatography and used as the coating antigen for serological testing by indirect enzyme-linked immunosorbant assay (ELISA). When tested against a panel of swine serum samples, the recombinant G protein-based ELISA successfully discriminated all 40 samples previously determined to be serum neutralizing test (SNT) positive from 11 SNT negatives samples. The data show that the recombinant G protein exhibits the antigenic epitopes and conformation necessary for specific antigen-antibody recognition. The main advantage of the recombinant G protein-based NiV ELISA compared to an ELISA using whole virus antigen is the use of a single antigenic protein instead of inactivated whole virus which is required to be prepared under high risk and cost. This test is suitable for routine diagnosis of NiV and also for epidemiological surveys as it allows highly reliable testing of a large number of sera rapidly.
    Matched MeSH terms: Recombinant Proteins/biosynthesis
  11. Mustafa AD, Kalyanasundram J, Sabidi S, Song AA, Abdullah M, Abdul Rahim R, et al.
    BMC Biotechnol, 2019 05 14;19(1):27.
    PMID: 31088425 DOI: 10.1186/s12896-019-0522-x
    BACKGROUND: The current limitations of conventional BCG vaccines highlights the importance in developing novel and effective vaccines against tuberculosis (TB). The utilization of probiotics such as Lactobacillus plantarum for the delivery of TB antigens through in-trans surface display provides an effective and safe vaccine approach against TB. Such non-recombinant probiotic surface display strategy involves the fusion of candidate proteins with cell wall binding domain such as LysM, which enables the fusion protein to anchor the L. plantarum cell wall externally, without the need for vector genetic modification. This approach requires sufficient production of these recombinant fusion proteins in cell factory such as Escherichia coli which has been shown to be effective in heterologous protein production for decades. However, overexpression in E. coli expression system resulted in limited amount of soluble heterologous TB-LysM fusion protein, since most of it are accumulated as insoluble aggregates in inclusion bodies (IBs). Conventional methods of denaturation and renaturation for solubilizing IBs are costly, time-consuming and tedious. Thus, in this study, an alternative method for TB antigen-LysM protein solubilization from IBs based on the use of non-denaturating reagent N-lauroylsarcosine (NLS) was investigated.

    RESULTS: Expression of TB antigen-LysM fusion genes was conducted in Escherichia coli, but this resulted in IBs deposition in contrast to the expression of TB antigens only. This suggested that LysM fusion significantly altered solubility of the TB antigens produced in E. coli. The non-denaturing NLS technique was used and optimized to successfully solubilize and purify ~ 55% of the recombinant cell wall-anchoring TB antigen from the IBs. Functionality of the recovered protein was analyzed via immunofluorescence microscopy and whole cell ELISA which showed successful and stable cell wall binding to L. plantarum (up to 5 days).

    CONCLUSION: The presented NLS purification strategy enables an efficient and rapid method for obtaining higher yields of soluble cell wall-anchoring Mycobacterium tuberculosis antigens-LysM fusion proteins from IBs in E. coli.

    Matched MeSH terms: Recombinant Proteins/metabolism*
  12. Rothan HA, Han HC, Ramasamy TS, Othman S, Rahman NA, Yusof R
    BMC Infect Dis, 2012;12:314.
    PMID: 23171075 DOI: 10.1186/1471-2334-12-314
    Global resurgence of dengue virus infections in many of the tropical and subtropical countries is a major concern. Therefore, there is an urgent need for the development of successful drugs that are both economical and offer a long-lasting protection. The viral NS2B-NS3 serine protease (NS2B-NS3pro) is a promising target for the development of drug-like inhibitors, which are not available at the moment. In this study, we report retrocyclin-1 (RC-1) production in E. coli as a recombinant peptide to test against dengue NS2B-NS3pro.
    Matched MeSH terms: Recombinant Proteins/pharmacology*
  13. Loh HS, Green BJ, Yusibov V
    Curr Opin Virol, 2017 10;26:81-89.
    PMID: 28800551 DOI: 10.1016/j.coviro.2017.07.019
    Production of proteins in plants for human health applications has become an attractive strategy attributed by their potentials for low-cost production, increased safety due to the lack of human or animal pathogens, scalability and ability to produce complex proteins. A major milestone for plant-based protein production for use in human health was achieved when Protalix BioTherapeutics produced taliglucerase alfa (Elelyso®) in suspension cultures of a transgenic carrot cell line for the treatment of patients with Gaucher's disease, was approved by the USA Food and Drug Administration in 2012. In this review, we are highlighting various approaches for plant-based production of proteins and recent progress in the development of plant-made therapeutics and biologics for the prevention and treatment of human diseases.
    Matched MeSH terms: Recombinant Proteins/genetics; Recombinant Proteins/metabolism*
  14. Li S, Lu BP, Feng J, Zhou JJ, Xie ZZ, Liang C, et al.
    Trop Biomed, 2020 Dec 01;37(4):852-863.
    PMID: 33612738 DOI: 10.47665/tb.37.4.852
    Fructose-1,6-bisphosphate aldolase (FbA), a well characterized glycometabolism enzyme, has been found to participate in other important processes besides the classic catalysis. To understand the important functions of three fructose-1,6-bisphosphate aldolases from Clonorchis sinensis (CsFbAs, CsFbA-1/2/3) in host-parasite interplay, the open reading frames of CsFbAs were cloned into pET30a (+) vector and the resulting recombinant plasmids were transformed into Escherichia coli BL21 (DE3) for expression of the proteins. Purified recombinant CsFbAs proteins (rCsFbAs) were approximately 45.0 kDa on 12% SDS-PAGE and could be probed with each rat anti-rCsFbAs sera by western blotting analysis. ELISA and ligand blot overlay indicated that rCsFbAs of 45.0 kDa as well as native CsFbAs of 39.5 kDa from total worm extracts and excretory-secretory products of Clonorchis sinensis (CsESPs) could bind to human plasminogen, and the binding could be efficiently inhibited by lysine analog ε-aminocaproic acid. Our results suggested that as both the components of CsESPs and the plasminogen binding proteins, three CsFbAs might be involved in preventing the formation of the blood clot so that Clonorchis sinensis could acquire enough nutrients from host tissue for their successful survival and colonization in the host. Our work will provide us with new information about the biological function of three CsFbAs and their roles in hostparasite interplay.
    Matched MeSH terms: Recombinant Proteins/genetics; Recombinant Proteins/metabolism
  15. Tiede A, Abdul-Karim F, Carcao M, Persson P, Clausen WHO, Kearney S, et al.
    Haemophilia, 2017 Jul;23(4):547-555.
    PMID: 28233381 DOI: 10.1111/hae.13191
    INTRODUCTION: Nonacog beta pegol (N9-GP) is a glycoPEGylated recombinant factor IX (FIX) with an extended half-life developed for routine prophylaxis and the prevention and treatment of bleeding episodes in patients with haemophilia B.

    AIM: The aim of this study was to evaluate the pharmacokinetics (PK) of N9-GP.

    METHODS: Data from 41 previously treated haemophilia B patients, enrolled globally (16 adolescents/adults and 25 children; FIX activity ≤0.02 IU mL-1) with no history of FIX inhibitors, were included. N9-GP was administered once-weekly as 10 IU kg-1or 40 IU kg-1in adolescents/adults and 40 IU kg-1in children. Blood was sampled up to 168 h (1 week) post dose. Standard PK was estimated on the basis of plasma FIX activity vs. time (PK profiles) using non-compartmental methods. Furthermore, a population PK analysis and FIX activity predictions were performed.

    RESULTS: Incremental recoveries were 0.02 (IU mL-1)/(IU kg-1) in both adolescents/adults and children. The extended half-life resulted in mean trough levels of 0.27 IU mL-1for adolescents/adults and 0.17 IU mL-1for children at steady-state after weekly dosing at 40 IU kg-1. The population PK analysis confirmed a mono-exponential decay in FIX activity and allowed for predictions of FIX activity for adolescents/adults above 0.15 IU mL-1at all times and 6.4 days week-1in children.

    CONCLUSION: N9-GP has the potential to shift previously treated haemophilia B patients from a severe/moderate disease state into a mild- or non-haemophilic range for most of the dosing interval, which is expected to reduce the number of bleeding episodes.

    Matched MeSH terms: Recombinant Proteins/pharmacokinetics; Recombinant Proteins/therapeutic use
  16. Hoque MA, Islam MS, Islam MN, Kato T, Nishino N, Ito A, et al.
    Amino Acids, 2014 Oct;46(10):2435-44.
    PMID: 25048030 DOI: 10.1007/s00726-014-1800-5
    Inhibitors of histone deacetylases (HDACs) are a promising class of anticancer agents that have an effect on gene regulation. The naturally occurring cyclic depsipeptide FK228 containing disulfide and Largazole possessing thioester functionalities act as pro-drugs and share the same HDAC inhibition mechanism in cell. Inspired from these facts, we have reported bicyclic tetrapeptide disulfide HDAC inhibitors resembling FK228 with potent activity and enhanced selectivity. In the present study, we report the design and synthesis of several mono and bicyclic tetrapeptide thioester HDAC inhibitors that share the inhibition mechanism similar to Largazole. Most of the compounds showed HDAC1 and HDAC4 inhibition and p21 promoting activity in nanomolar ranges. Among these the monocyclic peptides 1, 2 and bicyclic peptide, 4 are notable demanding more advanced research to be promising anticancer drug candidates.
    Matched MeSH terms: Recombinant Proteins/metabolism; Recombinant Proteins/chemistry
  17. Binti Kamaruddin NA, Fong LY, Tan JJ, Abdullah MNH, Singh Cheema M, Bin Yakop F, et al.
    Molecules, 2020 May 29;25(11).
    PMID: 32485974 DOI: 10.3390/molecules25112534
    Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular diseases. Omentin, an adipocytokine that is abundantly expressed in visceral fat tissue, has been reported to possess anti-inflammatory and antidiabetic properties. However, endothelial protective effects of omentin against oxidative stress remain unclear. This study aimed to evaluate the protective effect of omentin against hydrogen peroxide (H2O2)-induced cell injury in human umbilical vein endothelial cells (HUVECs). Cytotoxicity and cytoprotective effects of omentin were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic activity of HUVECs was detected using Annexin-V/PI and Hoechst 33258 staining methods. Antioxidant activity of omentin was evaluated by measuring both reactive oxygen species (ROS) levels and glutathione peroxidase (GPx) activity. No cytotoxicity effect was observed in HUVECs treated with omentin alone at concentrations of 150 to 450 ng/ml. MTT assay showed that omentin significantly prevented the cell death induced by H2O2 (p < 0.001). Hoechst staining and flow cytometry also revealed that omentin markedly prevented H2O2-induced apoptosis. Moreover, omentin not only significantly inhibited ROS production (p < 0.01) but also significantly (p < 0.01) increased GPx activity in HUVECs. In conclusion, our data suggest that omentin may protect HUVECs from injury induced by H2O2.
    Matched MeSH terms: Recombinant Proteins/pharmacology
  18. Ling LY, Ithoi I, Yik FM
    PMID: 20578535
    SAG2 is one of the major surface antigens of the intracellular protozoan parasite Toxoplasma gondii. In the present study, truncated recombinant SAG2(S) and full length recombinant SAG2(T) of T. gondii were optimally produced (approximately 15 mg/liter) in Pichia pastoris expression system using BMMY medium at pH 3, 25 degrees C in 0.5-1% methanol and a time-course of 1-2 days. The recombinant proteins were purified using a commercial gel filtration purification system obtaining approximately 33% recovery. The purified SAG2(S) and SAG2(T) showed molecular masses of 45 and 36 kDa by SDS-PAGE, respectively. The recombinant proteins were evaluated by Western blotting with patients' sera and demonstrated 90% sensitivity and 100% specificity for detection of toxoplasmosis. This study provided a means for large-scale expression and purification of SAG2, which should be useful for diagnosis of toxoplasmosis.
    Matched MeSH terms: Recombinant Proteins/biosynthesis*
  19. Ha ZY, Mathew S, Yeong KY
    Curr Protein Pept Sci, 2020;21(1):99-109.
    PMID: 31702488 DOI: 10.2174/1389203720666191107094949
    Butyrylcholinesterase is a serine hydrolase that catalyzes the hydrolysis of esters in the body. Unlike its sister enzyme acetylcholinesterase, butyrylcholinesterase has a broad substrate scope and lower acetylcholine catalytic efficiency. The difference in tissue distribution and inhibitor sensitivity also points to its involvement external to cholinergic neurotransmission. Initial studies on butyrylcholinesterase showed that the inhibition of the enzyme led to the increment of brain acetylcholine levels. Further gene knockout studies suggested its involvement in the regulation of amyloid-beta, a brain pathogenic protein. Thus, it is an interesting target for neurological disorders such as Alzheimer's disease. The substrate scope of butyrylcholinesterase was recently found to include cocaine, as well as ghrelin, the "hunger hormone". These findings led to the development of recombinant butyrylcholinesterase mutants and viral gene therapy to combat cocaine addiction, along with in-depth studies on the significance of butyrylcholinesterase in obesity. It is observed that the pharmacological impact of butyrylcholinesterase increased in tandem with each reported finding. Not only is the enzyme now considered an important pharmacological target, it is also becoming an important tool to study the biological pathways in various diseases. Here, we review and summarize the biochemical properties of butyrylcholinesterase and its roles, as a cholinergic neurotransmitter, in various diseases, particularly neurodegenerative disorders.
    Matched MeSH terms: Recombinant Proteins/genetics; Recombinant Proteins/metabolism; Recombinant Proteins/therapeutic use
  20. Sunderasan E, Bahari A, Arif SA, Zainal Z, Hamilton RG, Yeang HY
    Clin Exp Allergy, 2005 Nov;35(11):1490-5.
    PMID: 16297147 DOI: 10.1111/j.1365-2222.2005.02371.x
    BACKGROUND:
    Hev b 4 is an allergenic natural rubber latex (NRL) protein complex that is reactive in skin prick tests and in vitro immunoassays. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Hev b 4 is discerned predominantly at 53-55 kDa together with a 57 kDa minor component previously identified as a cyanogenic glucosidase. Of the 13 NRL allergens recognized by the International Union of Immunological Societies, the 53-55 kDa Hev b 4 major protein is the only candidate that lacks complete cDNA and protein sequence information.

    OBJECTIVE:
    We sought to clone the transcript encoding the Hev b 4 major protein, and characterize the native protein and its recombinant form in relation to IgE binding.

    METHODS:
    The 5'/3' rapid amplification of cDNA ends method was employed to obtain the complete cDNA of the Hev b 4 major protein. A recombinant form of the protein was over-expressed in Escherichia coli. The native Hev b 4 major protein was deglycosylated by trifluoromethane sulphonic acid. Western immunoblots of the native, deglycosylated and recombinant proteins were performed using both polyclonal antibodies and sera from latex-allergic patients.

    RESULTS:
    The cDNA encoding the Hev b 4 major protein was cloned. Its open reading frame matched lecithinases in the conserved domain database and contained 10 predicted glycosylation sites. Detection of glycans on the Hev b 4 lecithinase homologue confirmed it to be a glycoprotein. The deglycosylated lecithinase homologue was discerned at 40 kDa on SDS-PAGE, this being comparable to the 38.53 kDa mass predicted by its cDNA. Deglycosylation of the lecithinase homologue resulted in the loss of IgE recognition, although reactivity to polyclonal rabbit anti-Hev b 4 was retained. IgE from latex-allergic patients also failed to recognize the non-glycosylated E. coli recombinant lecithinase homologue.

    CONCLUSION:
    The IgE epitopes of the Hev b 4 lecithinase homologue reside mainly in its carbohydrate moiety, which also account for the discrepancy between the observed molecular weight of the protein and the value calculated from its cDNA.
    Matched MeSH terms: Recombinant Proteins/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links