Displaying publications 1 - 20 of 160 in total

Abstract:
Sort:
  1. Gan CS, Yusof R, Othman S
    Acta Trop, 2015 Sep;149:8-14.
    PMID: 25981524 DOI: 10.1016/j.actatropica.2015.05.005
    Dengue virus (DV) infection demonstrates an intriguing virus-induced intracellular membrane alteration that results in the augmentation of major histocompatibility complex (MHC) class I-restricted antigen presentation. As oppose to its biological function in attracting CD8(+) T-cells, this phenomenon appears to facilitate the immune evasion. However, the molecular events that attribute to the dysregulation of the antigen presenting mechanism (APM) by DV remain obscure. In this study, we aimed to characterize the host cell APM upon infection with all serotypes of whole DV. Cellular RNA were isolated from infected cells and the gene expressions of LMP2, LMP7, TAP1, TAP2, TAPBP, CALR, CANX, PDIA3, HLA-A and HLA-B were analyzed via quantitative PCR. The profiles of the gene expression were further validated. We showed that all four DV serotypes modulate host APM at the proteasomal level with DV2 showing the most prominent expression profile.
    Matched MeSH terms: Serogroup
  2. Priya SP, Sakinah S, Ling MP, Chee HY, Higuchi A, Hamat RA, et al.
    Acta Trop, 2017 Jul;171:213-219.
    PMID: 28427958 DOI: 10.1016/j.actatropica.2017.04.010
    Dengue virus (DENV) has emerged as a major economic concern in developing countries, with 2.5 billion people believed to be at risk. Vascular endothelial cells (ECs) lining the circulatory system from heart to end vessels perform crucial functions in the human body, by aiding gas exchange in lungs, gaseous, nutritional and its waste exchange in all tissues, including the blood brain barrier, filtration of fluid in the glomeruli, neutrophil recruitment, hormone trafficking, as well as maintenance of blood vessel tone and hemostasis. These functions can be deregulated during DENV infection. In this study, BALB/c mice infected with DENV serotype 2 were analyzed histologically for changes in major blood vessels in response to DENV infection. In the uninfected mouse model, blood vessels showed normal architecture with intact endothelial monolayer, tunica media, and tunica adventitia. In the infected mouse model, DENV distorted the endothelium lining and disturbed the smooth muscle, elastic laminae and their supporting tissues causing vascular structural disarrangement. This may explain the severe pathological illness in DENV-infected individuals. The overall DENV-induced damages on the endothelial and it's supporting tissues and the dysregulated immune reactions initiated by the host were discussed.
    Matched MeSH terms: Serogroup
  3. Ong NH, Chua CL, Liew JWK, Wan Sulaiman WY, Chan YF, Sam IC, et al.
    Acta Trop, 2020 Aug;208:105472.
    PMID: 32389451 DOI: 10.1016/j.actatropica.2020.105472
    Zika virus (ZIKV) is a mosquito-borne flavivirus with global impact since 2015. Although ZIKV was first isolated from Aedes aegypti in Malaysia in 1965, not much is known about the competency of Malaysian Ae. aegypti to ZIKV. To date only 9 cases of ZIKV have been reported in Malaysia despite the abundance of mosquito vectors. This study aimed to determine the susceptibility of Ae. aegypti to ZIKV, and the impact of sequential infections in Ae. aegypti mosquitoes with DENV serotype 2 (DENV-2) followed by ZIKV. Field-caught urban Ae. aegypti were orally challenged with a Martinique strain of ZIKV, and midgut, head/thorax and saliva were collected at 3, 7 and 14 days post-infection (dpi). At 14 dpi, ZIKV-exposed mosquitoes had infection and dissemination rates of 59% (n=10/17) and 90% (n=9/10), respectively. Average titres of 3.9 and 4.4 log pfu infectious ZIKV were recovered in midgut and head/thorax, respectively. In sequential infection, prior exposure of Ae. aegypti to DENV did not affect the subsequent ZIKV infection in head/thorax albeit with a low sample size. In conclusion, Malaysian urban Ae. aegypti is susceptible to the contemporary Asian lineage of ZIKV. The established and continuous DENV circulation in Ae. aegypti did not suppress ZIKV emergence in Malaysia. Other factors contributing to low level of ZIKV circulation in Malaysia remain to be explored.
    Matched MeSH terms: Serogroup
  4. Garba B, Bahaman AR, Bejo SK, Zakaria Z, Mutalib AR, Bande F
    Acta Trop, 2018 Feb;178:242-247.
    PMID: 29217379 DOI: 10.1016/j.actatropica.2017.12.010
    INTRODUCTION: Leptospirosis is a zoonotic disease caused by a diverse pathogenic leptospira species and serovars. The disease is transmitted directly following contact with infected urine and other body fluids or indirectly after contact with water or soil contaminated with infected urine.

    OBJECTIVES: While a wide range of domestic and wild animals are known to be reservoirs of the disease, occupation, international travel and recreation are beginning to assume a center stage in the transmission of the disease. The objective of this study is to review available literatures to determine the extent to which these aforementioned risk factors aid the transmission, increase incidence and outbreak of leptospirosis in Malaysia.

    STUDY DESIGN: The review was conducted based on prevalence, incidence, and outbreak cases of leptospirosis among human and susceptible animals predisposed to several of the risk factors identified in Malaysia.

    METHODS: Literature searchers and reviews were conducted based on articles published in citation index journals, Malaysian ministry of health reports, periodicals as well as reliable newspapers articles and online media platforms. In each case, the newspapers and online media reports were supported by press briefings by officials of the ministry of health and other agencies responsible.

    RESULTS: The disease is endemic in Malaysia, and this was attributed to the large number of reservoir animals, suitable humid and moist environment for proliferation as well as abundant forest resources. Over 30 different serovars have been detected in Malaysia in different domestic and wild animal species. This, in addition to the frequency of flooding which has increased in recent years, and has helped increase the risk of human exposure. Occupation, recreation, flooding and rodent population were all identified as an important source and cause of the disease within the study population.

    CONCLUSION: There is an urgent need for the government and other stakeholders to intensify efforts to control the spread of the disease, especially as it greatly affect human health and the tourism industry which is an important component of the Malaysian economy. The risk of infection can be minimized by creating awareness on the source and mode of transmission of the disease, including the use of protective clothing and avoiding swimming in contaminated waters. Moreover, improved diagnostics can also help reduce the suffering and mortalities that follow infection after exposure to infection source.

    Matched MeSH terms: Serogroup
  5. Mohammed Jajere S, Hassan L, Zakaria Z, Abu J, Abdul Aziz S
    Antibiotics (Basel), 2020 Oct 15;9(10).
    PMID: 33076451 DOI: 10.3390/antibiotics9100701
    The emergence of multidrug resistance (MDR), including colistin resistance, among Enterobacteriaceae recovered from food animals poses a serious public health threat because of the potential transmission of these resistant variants to humans along the food chain. Village chickens or Ayam Kampung are free-range birds and are preferred by a growing number of consumers who consider these chickens to be organic and more wholesome. The current study investigates the antibiogram profiles of Salmonella isolates recovered from village chicken flocks in South-central Peninsular Malaysia. A total of 34 isolates belonging to eight serotypes isolated from village chickens were screened for resistance towards antimicrobials including colistin according to the WHO and OIE recommendations of critical antibiotics. S. Weltevreden accounted for 20.6% of total isolates, followed by serovars Typhimurium and Agona (17.6%). The majority of isolates (73.5%) demonstrated resistance to one or more antimicrobials. Eight isolates (23.5%) were resistant to ≥3 antimicrobial classes. Colistin resistance (minimum inhibitory concentrations: 4-16 mg/L) was detected among five isolates (14.7%), including S. Weltevreden, S. Albany, S. Typhimurium, and Salmonella spp. Univariable analysis of risk factors likely to influence the occurrence of MDR Salmonella revealed that the flock size, poultry production system, and use of antibiotics in the farm were not significantly (p > 0.05) associated with MDR Salmonella. The current study highlights that MDR Salmonella occur at a lower level in village chickens compared to that found in live commercial chickens. However, MDR remains a problem even among free-range chickens with minimal exposure to antibiotics.
    Matched MeSH terms: Serogroup
  6. Khoo CH, Sim JH, Salleh NA, Cheah YK
    Antonie Van Leeuwenhoek, 2015 Jan;107(1):23-37.
    PMID: 25312847 DOI: 10.1007/s10482-014-0300-7
    Salmonella is an important food-borne pathogen causing disease in humans and animals worldwide. Salmonellosis may be caused by any one of over 2,500 serovars of Salmonella. Nonetheless, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Agona are the second most prevalent serovars isolated from humans and livestock products respectively. Limited knowledge is available about the virulence mechanisms responsible for diarrheal disease caused by them. To investigate the contribution of sopB, sopD and pipD as virulence factors in intracellular infections and the uniqueness of these bacteria becoming far more prevalent than other serovars, the infection model of Caenorhabditis elegans and phenotypic microarray were used to characterize their mutants. The strains containing the mutation in sopB, sopD and pipD genes were constructed by using latest site-specific group II intron mutagenesis approach to reveal the pathogenicity of the virulence factors. Overall, we observed that the mutations in sopB, sopD and pipD genes of both serovars did not exhibit significant decrease in virulence towards the nematode. This may indicate that these virulence effectors may not be universal virulence factors involved in conserved innate immunity. There are significant phenotypic differences amongst strains carrying sopB, sopD and pipD gene mutations via the analysis of biochemical profiles of the bacteria. Interestingly, mutant strains displayed different susceptibility to chemical stressors from several distinct pharmacological and structural classes when compared to its isogenic parental strains. These metabolic and chemosensitivity assays also revealed multiple roles of Salmonella virulence factors in nutrient metabolism and antibiotic resistance.
    Matched MeSH terms: Serogroup
  7. Lin F, Yang H, Zhang L, Fang SH, Zhan XF, Yang LY
    Arch Virol, 2019 Aug;164(8):2131-2135.
    PMID: 31102050 DOI: 10.1007/s00705-019-04266-1
    A large-scale dengue fever (DF) outbreak occurred in Chaozhou, Guangdong province, China 2015. In our study, 528 dengue-positive patient samples were collected for clinical and laboratory data analysis. 491 cases (93.0%) were primary dengue fever (PDF), 22 cases (4.2%) were dengue hemorrhagic fever (DHF) and 15 cases (2.8%) were diagnosed with severe dengue fever (SDF). All cases were infected by dengue virus serotype 2 (DENV-2), and the isolated strains belonged to cosmopolitan genotype, which were grouped closely with Malaysia strains from 2010 to 2014. Moreover, the study showed that laboratory indices have significantly difference in PDF, DHF and SDF patients. A comprehensive analysis of these data could assist and guide the clinical diagnosis for DF, which has an important significance for the control of dengue virus infection.
    Matched MeSH terms: Serogroup
  8. Suut L, Mazlan MN, Arif MT, Yusoff H, Abdul Rahim NA, Safii R, et al.
    Asia Pac J Public Health, 2016 07;28(5):450-7.
    PMID: 27183976 DOI: 10.1177/1010539516648003
    Leptospirosis is an important zoonotic disease globally and is endemic in Malaysia. A study was conducted in the Rejang basin of Sarawak from June 2011 to May 2013 to determine the seroprevalence of leptospirosis among the communities and dominant infecting Leptospira serovars. A total of 508 human sera were analyzed using ELISA and the microscopic agglutination test (MAT). The seroprevalence of leptospirosis in the study area was 37.4%, with the highest prevalence in Kapit division. More women were positive for leptospirosis (59.5%), and the mean age of seropositive individuals was 42.2 (SD = 18.7) years. Antibody titers between 1:50 and 1:1600 were reported, and serovars djasiman (22.1%), shermani (13.2%), and pomona (7.9%) predominated, with varied distribution between geographical locations. This study highlighted the endemicity and diversity of existing Leptospira serovars within the community. This information should be communicated to local health personnel and communities at risk, and rapid diagnostic capability should be made available to local health facilities.
    Matched MeSH terms: Serogroup
  9. Chong LC, Khan AM
    BMC Genomics, 2019 Dec 24;20(Suppl 9):921.
    PMID: 31874646 DOI: 10.1186/s12864-019-6311-z
    BACKGROUND: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.

    METHODS: All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon's entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database.

    RESULTS: A total of 2321 nonamers met the HCSS selection criteria of entropy  0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity.

    CONCLUSION: This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.

    Matched MeSH terms: Serogroup
  10. Mohan A, Munusamy C, Tan YC, Muthuvelu S, Hashim R, Chien SL, et al.
    BMC Infect Dis, 2019 Apr 18;19(1):330.
    PMID: 30999894 DOI: 10.1186/s12879-019-3963-x
    BACKGROUND: Invasive Salmonella infections result in significant morbidity and mortality in developing countries. In Asia, typhoid and paratyphoid fever are reported to be the major invasive Salmonella infections, while invasive non-typhoidal Salmonella (iNTS) infections are believed to be uncommon. Data from Sarawak, in Malaysian Borneo, are limited.

    METHODS: A retrospective study identifying all children aged

    Matched MeSH terms: Serogroup
  11. Rahman MHAA, Hairon SM, Hamat RA, Jamaluddin TZMT, Shafei MN, Idris N, et al.
    BMC Infect Dis, 2018 Nov 14;18(1):569.
    PMID: 30428852 DOI: 10.1186/s12879-018-3470-5
    BACKGROUND: Leptospirosis is a zoonotic disease associated with occupations which exposed workers to environments contaminated with urine of infected animals. The objective of this study was to determine the seroprevalence of leptospirosis among wet market workers in Kelantan.

    METHODS: A cross sectional study was conducted in two main wet markets in Kelantan and 232 wet market workers were randomly selected. Blood samples were analysed for microscopic agglutination test (MAT) against 20 live leptospirosis reference serovars. MAT titres of 1:100 or more were considered as seropositive.

    RESULTS: It was found that the overall seroprevalence for leptospirosis among the respondents was 33.6% (95% CI = 27.5, 39.7). The samples were tested positive against serovars Melaka (IMR LEP 1), Terengganu (IMR LEP 115), Sarawak (IMR LEP 175), Copenhageni (IMR LEP 803/11), Hardjobovis (IMR LEP 27), Australis, Autumnalis, Bataviae, Canicola, Grippotyphosa, Hardjoprajitno, Icterohaemorrhagiae, Javanica, Pyrogenes, Terrasovi, Djasiman, Patoc and Pomona. The predominant serovars was Autumnalis (18.2%).

    CONCLUSION: Wet markets workers were at risk for leptospirosis infection evidenced by high seroprevalence of leptospirosis in this study. Further research need to be conducted to determine factors that favours infection in this groups.

    Matched MeSH terms: Serogroup
  12. Dhanoa A, Hassan SS, Ngim CF, Lau CF, Chan TS, Adnan NA, et al.
    BMC Infect Dis, 2016 08 11;16(1):406.
    PMID: 27514512 DOI: 10.1186/s12879-016-1731-8
    BACKGROUND: The co-circulation of 4 DENV serotypes in geographically expanding area, has resulted in increasing occurrence of DENV co-infections. However, studies assessing the clinical impact of DENV co-infections have been scarce and have involved small number of patients. This study explores the impact of DENV co-infection on clinical manifestations and laboratory parameters.

    METHODS: This retrospective study involved consecutive hospitalized patients with non-structural protein 1 (NS1) antigen positivity during an outbreak (Jan to April 2014). Multiplex RT-PCR was performed directly on NS1 positive serum samples to detect and determine the DENV serotypes. All PCR-positive serum samples were inoculated onto C6/36 cells. Multiplex PCR was repeated on the supernatant of the first blind passage of the serum-infected cells. Random samples of supernatant from the first passage of C6/36 infected cells were subjected to whole genome sequencing. Clinical and laboratory variables were compared between patients with and without DENV co-infections.

    RESULTS: Of the 290 NS1 positive serum samples, 280 were PCR positive for DENV. Medical notes of 262 patients were available for analysis. All 4 DENV serotypes were identified. Of the 262 patients, forty patients (15.3 %) had DENV co-infections: DENV-1/DENV-2(85 %), DENV-1/DENV-3 (12.5 %) and DENV-2/DENV-3 (2.5 %). Another 222 patients (84.7 %) were infected with single DENV serotype (mono-infection), with DENV- 1 (76.6 %) and DENV- 2 (19.8 %) predominating. Secondary dengue infections occurred in 31.3 % patients. Whole genome sequences of random samples representing DENV-1 and DENV-2 showed heterogeneity amongst the DENVs. Multivariate analysis revealed that pleural effusion and the presence of warning signs were significantly higher in the co-infected group, both in the overall and subgroup analysis. Diarrhoea was negatively associated with co-infection. Additionally, DENV-2 co-infected patients had higher frequency of patients with severe thrombocytopenia (platelet count < 50,000/mm(3)), whereas DENV-2 mono-infections presented more commonly with myalgia. Elevated creatinine levels were more frequent amongst the co-infected patients in univariate analysis. Haemoconcentration and haemorrhagic manifestations were not higher amongst the co-infected patients. Serotypes associated with severe dengue were: DENV-1 (n = 9), DENV-2 (n = 1), DENV-3 (n = 1) in mono-infected patients and DENV-1/DENV-2 (n = 5) and DENV-1/DENV-3 (n = 1) amongst the co-infected patients.

    CONCLUSION: DENV co-infections are not uncommon in a hyperendemic region and co-infected patients are skewed towards more severe clinical manifestations compared to mono-infected patients.

    Matched MeSH terms: Serogroup
  13. Annan E, Nguyen UDT, Treviño J, Wan Yaacob WF, Mangla S, Pathak AK, et al.
    BMC Infect Dis, 2023 Mar 10;23(1):147.
    PMID: 36899304 DOI: 10.1186/s12879-023-08051-z
    BACKGROUND: Pregnancy increases a woman's risk of severe dengue. To the best of our knowledge, the moderation effect of the dengue serotype among pregnant women has not been studied in Mexico. This study explores how pregnancy interacted with the dengue serotype from 2012 to 2020 in Mexico.

    METHOD: Information from 2469 notifying health units in Mexican municipalities was used for this cross-sectional analysis. Multiple logistic regression with interaction effects was chosen as the final model and sensitivity analysis was done to assess potential exposure misclassification of pregnancy status.

    RESULTS: Pregnant women were found to have higher odds of severe dengue [1.50 (95% CI 1.41, 1.59)]. The odds of dengue severity varied for pregnant women with DENV-1 [1.45, (95% CI 1.21, 1.74)], DENV-2 [1.33, (95% CI 1.18, 1.53)] and DENV-4 [3.78, (95% CI 1.14, 12.59)]. While the odds of severe dengue were generally higher for pregnant women compared with non-pregnant women with DENV-1 and DENV-2, the odds of disease severity were much higher for those infected with the DENV-4 serotype.

    CONCLUSION: The effect of pregnancy on severe dengue is moderated by the dengue serotype. Future studies on genetic diversification may potentially elucidate this serotype-specific effect among pregnant women in Mexico.

    Matched MeSH terms: Serogroup
  14. Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK
    BMC Microbiol, 2016 Jun 27;16(1):127.
    PMID: 27349637 DOI: 10.1186/s12866-016-0746-z
    BACKGROUND: Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition.

    RESULTS: A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNA(Pro) genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype.

    CONCLUSIONS: This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines.

    Matched MeSH terms: Serogroup*
  15. Netto, Marcus
    MyJurnal
    Dengue fever and its fatal complications have made a comeback since its control in the 1990’s. The Flavivirus has evolved into 4 serotypes DEN 1,2,3,4 which can be passed on by the mosquitoes for 7 generations for each serotype. This communicable disease is predominantly confined to urban areas. Quick control of the spread of the disease will prevent it from becoming an epidemic. The two species mosquitoes involved have different behaviours. The Aedes aegypti is an indoor vector which breeds in clean, clear and calm freshwater. The Aedes albopictus is an outdoor breeding mosquito which breeds in stagnant waters. Surveillance of the areas prone to outbreaks is vital. One of the roles of the entomologist is to monitor the vector for resistance to the insecticides. Localities that have been subjected to recurrent outbreaks will have vector which develop resistance to the insecticides used.
    Matched MeSH terms: Serogroup
  16. Gordon Smith CE, Turner LH, Harrison JL, Broom JC
    Bull World Health Organ, 1961;24(6):807-16.
    PMID: 20604093
    In previous papers it has been demonstrated that ground-dwelling rats are the principal reservoir of leptospirosis in Malaya. The present paper considers the distribution of infection by sex and weight in the ten principal rat species. There appears to be a general tendency for females to be infected more frequently than males, but significant differences were demonstrated only in R. sabanus (more than three times as many females as males infected) and R. whiteheadi. In Malaya, where seasonal changes are minimal, weights can be used as a good index of age in rats. In rat species with a low incidence of infection the incidence appeared to rise steadily with age. In species with a medium incidence the infection rate rose at first with age, fell in the 6-8-month age-group, and then rose again. In high-incidence species the rate rose rapidly from the second month.There appear to be three types of enzootic infection; (1) intensive transmission of a single serogroup in a crowded population of rats of a single species (transmission probably being through urinary contamination of damp soil); (2) low-intensity transmission of several serogroups among ground-rats frequenting wet places (probably with urinary transmission); and (3) low-intensity transmission of several serogroups among ground-rats in dry places (the transmission may be venereal).
    Matched MeSH terms: Serogroup
  17. Smith CE, Turner LH
    Bull World Health Organ, 1961;24(1):35-43.
    PMID: 20604084
    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time.It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken.
    Matched MeSH terms: Serogroup
  18. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
    Matched MeSH terms: Serogroup
  19. Jiksing C, Voo CLY, Rodrigues KF
    Data Brief, 2020 Aug;31:105920.
    PMID: 32637513 DOI: 10.1016/j.dib.2020.105920
    Salmonella is a gram-negative rod-shape bacterium from the family of Enterobacteriaceae that can cause a wide range of human disease such as enteric fever, gastroenteritis and bacteremia. Here we sequenced two genomes of Salmonella bacteria isolated from the Gallus gallus domesticus host. Genomic DNA of the two Salmonella isolates were extracted and subjected to whole genome sequencing using Illumina platform. The draft genome size of the two Salmonella isolates was determined to be 4,902,295 bp (S18) and 4,847,310 bp (S20) respectively. The percentage of GC content for both draft genomes is the same which is 52.1%. Both the whole genome shotgun project (S18 and S20) has been deposited in National Center for Biotechnology Information Sequence Read Archive under the accession number of SRR7503041 (S18) and SRR7503040 (S20). The sequenced genome (S18 and S20) were aligned with the reference genome and three other Salmonella genomes from serogroup B, D and E. The data obtained show the presence of unique DNA sequences in S18 and S20 genomes. This unique DNA sequences are from the fimbrial gene group.
    Matched MeSH terms: Serogroup
  20. Alhaj-Qasem DM, Al-Hatamleh MAI, Irekeola AA, Khalid MF, Mohamud R, Ismail A, et al.
    Diagnostics (Basel), 2020 Jun 28;10(7).
    PMID: 32605310 DOI: 10.3390/diagnostics10070438
    Paratyphoid fever is caused by the bacterium Salmonellaenterica serovar Paratyphi (A, B and C), and contributes significantly to global disease burden. One of the major challenges in the diagnosis of paratyphoid fever is the lack of a proper gold standard. Given the absence of a licensed vaccine against S. Paratyphi, this diagnostic gap leads to inappropriate antibiotics use, thus, enhancing antimicrobial resistance. In addition, the symptoms of paratyphoid overlap with other infections, including the closely related typhoid fever. Since the development and utilization of a standard, sensitive, and accurate diagnostic method is essential in controlling any disease, this review discusses a new promising approach to aid the diagnosis of paratyphoid fever. This advocated approach is based on the use of surface plasmon resonance (SPR) biosensor and DNA probes to detect specific nucleic acid sequences of S. Paratyphi. We believe that this SPR-based genoassay can be a potent alternative to the current conventional diagnostic methods, and could become a rapid diagnostic tool for paratyphoid fever.
    Matched MeSH terms: Serogroup
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links