Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Zhou X, Yan Z, Hou J, Zhang L, Chen Z, Gao C, et al.
    Oncogene, 2024 Feb;43(7):495-510.
    PMID: 38168654 DOI: 10.1038/s41388-023-02923-z
    Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world with poor prognosis. Despite the promising applications of immunotherapy, the objective response rate is still unsatisfactory. We have previously shown that Hippo/YAP signaling acts as a powerful tumor promoter in ESCC. However, whether Hippo/YAP signaling is involved in tumor immune escape in ESCC remains largely unknown. Here, we show that YAP directly activates transcription of the "don't eat me" signal CD24, and plays a crucial role in driving tumor cells to avoid phagocytosis by macrophages. Mechanistically, YAP regulates CD24 expression by interacting with TEAD and binding the CD24 promoter to initiate transcription, which facilitates tumor cell escape from macrophage-mediated immune attack. Our animal model data and clinical data show that YAP combined with CD24 in tumor microenvironment redefines the impact of TAMs on the prognosis of ESCC patients which will provide a valuable basis for precision medicine. Moreover, treatment with YAP inhibitor altered the distribution of macrophages and suppressed tumorigenesis and progression of ESCC in vivo. Together, our study provides a novel link between Hippo/YAP signaling and macrophage-mediated immune escape, which suggests that the Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of ESCC patients. A proposed model for the regulatory mechanism of Hippo-YAP-CD24-signaling axis in the tumor-associated macrophages mediated immune escape.
    Matched MeSH terms: Signal Transduction/physiology
  2. Kovanich D, Low TY, Zaccolo M
    Int J Mol Sci, 2023 Feb 28;24(5).
    PMID: 36902098 DOI: 10.3390/ijms24054667
    cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
    Matched MeSH terms: Signal Transduction/physiology
  3. Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, et al.
    Int Arch Allergy Immunol, 2023;184(10):1010-1021.
    PMID: 37336194 DOI: 10.1159/000530960
    INTRODUCTION: Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies.

    METHODS: This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches.

    RESULTS: The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk.

    CONCLUSIONS: The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.

    Matched MeSH terms: Signal Transduction/physiology
  4. Shansky Y, Bespyatykh J
    Molecules, 2022 Nov 13;27(22).
    PMID: 36431930 DOI: 10.3390/molecules27227830
    Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
    Matched MeSH terms: Signal Transduction/physiology
  5. Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, et al.
    Chem Biol Interact, 2022 Jan 05;351:109735.
    PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735
    Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
    Matched MeSH terms: Signal Transduction/physiology
  6. van Sleen Y, Jiemy WF, Pringle S, van der Geest KSM, Abdulahad WH, Sandovici M, et al.
    Arthritis Rheumatol, 2021 12;73(12):2327-2337.
    PMID: 34105308 DOI: 10.1002/art.41887
    OBJECTIVE: Macrophages mediate inflammation, angiogenesis, and tissue destruction in giant cell arteritis (GCA). Serum levels of the macrophage-associated protein YKL-40 (chitinase 3-like protein 1), previously linked to angiogenesis and tissue remodeling, remain elevated in GCA despite glucocorticoid treatment. This study was undertaken to investigate the contribution of YKL-40 to vasculopathy in GCA.

    METHODS: Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL-40, its receptor interleukin-13 receptor α2 (IL-13Rα2), macrophage markers PU.1 and CD206, and the tissue-destructive protein matrix metalloproteinase 9 (MMP-9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte-macrophage colony-stimulating factor (GM-CSF)- or macrophage colony-stimulating factor (M-CSF)-skewed monocyte-derived macrophages were conducted to study the dynamics of YKL-40 production. Next, small interfering RNA-mediated knockdown of YKL-40 in GM-CSF-skewed macrophages was performed to study its effect on MMP-9 production. Finally, the angiogenic potential of YKL-40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs).

    RESULTS: YKL-40 was abundantly expressed by a CD206+MMP-9+ macrophage subset in inflamed temporal arteries and aortas. GM-CSF-skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL-40 compared to M-CSF-skewed macrophages (P = 0.039). In inflamed temporal arteries, IL-13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL-40 led to a 10-50% reduction in MMP-9 production by macrophages, whereas exposure of HMVECS to YKL-40 led to significantly increased tube formation.

    CONCLUSION: In GCA, a GM-CSF-skewed, CD206+MMP-9+ macrophage subset expresses high levels of YKL-40 which may stimulate tissue destruction and angiogenesis through IL-13Rα2 signaling. Targeting YKL-40 or GM-CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.

    Matched MeSH terms: Signal Transduction/physiology
  7. Lee SH, Golinska M, Griffiths JR
    Cells, 2021 Sep 09;10(9).
    PMID: 34572020 DOI: 10.3390/cells10092371
    In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
    Matched MeSH terms: Signal Transduction/physiology
  8. Angelopoulou E, Paudel YN, Bougea A, Piperi C
    J Neurosci Res, 2021 Sep;99(9):2117-2133.
    PMID: 34115895 DOI: 10.1002/jnr.24895
    The pathogenesis of Parkinson's disease (PD) remains elusive. There is still no available disease-modifying strategy against PD, whose management is mainly symptomatic. A growing amount of preclinical evidence shows that a complex interplay between autophagy dysregulation, mitochondrial impairment, endoplasmic reticulum stress, oxidative stress, and excessive neuroinflammation underlies PD pathogenesis. Identifying key molecules linking these pathological cellular processes may substantially aid in our deeper understanding of PD pathophysiology and the development of novel effective therapeutic approaches. Emerging preclinical evidence indicates that apelin, an endogenous neuropeptide acting as a ligand of the orphan G protein-coupled receptor APJ, may play a key neuroprotective role in PD pathogenesis, via inhibition of apoptosis and dopaminergic neuronal loss, autophagy enhancement, antioxidant effects, endoplasmic reticulum stress suppression, as well as prevention of synaptic dysregulation in the striatum, excessive neuroinflammation, and glutamate-induced excitotoxicity. Underlying signaling pathways involve phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin, extracellular signal-regulated kinase 1/2, and inositol requiring kinase 1α/XBP1/C/EBP homologous protein. Herein, we discuss the role of apelin/APJ axis and associated molecular mechanisms on the pathogenesis of PD in vitro and in vivo and provide evidence for its challenging therapeutic potential.
    Matched MeSH terms: Signal Transduction/physiology
  9. Yin Lee JP, Thomas AJ, Lum SK, Shamsudin NH, Hii LW, Mai CW, et al.
    Surg Oncol, 2021 Jun;37:101536.
    PMID: 33677364 DOI: 10.1016/j.suronc.2021.101536
    INTRODUCTION: Fibroadenomas of the breast present as two phenotypic variants. The usual variety is 5 cm or less in diameter and there is another large variant called giant fibroadenoma which is greater than 5 cm in diameter. Despite of its large size, it is not malignant. The aim of our study is to determine whether this large variant is different from the usual fibroadenoma in terms of its biological pathways and biomarkers.

    METHODS: mRNA was extracted from 44 fibroadenomas and 36 giant fibroadenomas, and transcriptomic profiling was performed to identify up- and down-regulated genes in the giant fibroadenomas as compared to the fibroadenomas.

    RESULTS: A total of 40 genes were significantly up-regulated and 18 genes were significantly down-regulated in the giant fibroadenomas as compared to the fibroadenomas of the breast. The top 5 up-regulated genes were FN1, IL3, CDC6, FGF8 and BMP8A. The top 5 down-regulated genes were TNR, CDKN2A, COL5A1, THBS4 and BMPR1B. The differentially expressed genes (DEGs) were found to be associated with 5 major canonical pathways involved in cell growth (PI3K-AKT, cell cycle regulation, WNT, and RAS signalling) and immune response (JAK-STAT signalling). Further analyses using 3 supervised learning algorithms identified an 8-gene signature (FN1, CDC6, IL23A, CCNA1, MCM4, FLT1, FGF22 and COL5A1) that could distinguish giant fibroadenomas from fibroadenomas with high predictive accuracy.

    CONCLUSION: Our findings demonstrated that the giant fibroadenomas are biologically distinct to fibroadenomas of the breast with overexpression of genes involved in the regulation of cell growth and immune response.

    Matched MeSH terms: Signal Transduction/physiology*
  10. Abdo Qaid EY, Zulkipli NN, Zakaria R, Ahmad AH, Othman Z, Muthuraju S, et al.
    Int J Neurosci, 2021 May;131(5):482-488.
    PMID: 32202188 DOI: 10.1080/00207454.2020.1746308
    Hypoxia has been associated with cognitive impairment. Many studies have investigated the role of mTOR signalling pathway in cognitive functions but its role in hypoxia-induced cognitive impairment remains controversial. This review aimed to elucidate the role of mTOR in the mechanisms of cognitive impairment that may pave the way towards the mechanistic understanding and therapeutic intervention of hypoxia-induced cognitive impairment. mTORC1 is normally regulated during mild or acute hypoxic exposure giving rise to neuroprotection, whereas it is overactivated during severe or chronic hypoxia giving rise to neuronal cells death. Thus, it is worth exploring the possibility of maintaining normal mTORC1 activity and thereby preventing cognitive impairment during severe or chronic hypoxia.
    Matched MeSH terms: Signal Transduction/physiology*
  11. Chong ZX, Yeap SK, Ho WY
    Pathol Res Pract, 2021 Mar;219:153326.
    PMID: 33601152 DOI: 10.1016/j.prp.2020.153326
    MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
    Matched MeSH terms: Signal Transduction/physiology
  12. Mohamed SIA, Jantan I, Nafiah MA, Seyed MA, Chan KM
    Curr Pharm Biotechnol, 2021;22(2):262-273.
    PMID: 32532192 DOI: 10.2174/1389201021666200612173029
    BACKGROUND: The anticancer effects of Phyllanthus amarus extract on various cancer cells have been investigated, however, the effects of its major constituents on HCT116 human colorectal cancer cells have not been reported.

    OBJECTIVE: In the present study, we investigated the cytotoxic effect of 80% ethanol extract of P. amarus and its marker constituents (phyllanthin, hypophyllanthin, gallic acid, niranthin, greraniin, phyltetralin, isolintetralin, corilagin and ellagic acid) on HCT116 and their underlying mechanisms of action.

    METHODS: Their antiproliferative and apoptotic effects on HCT 116 were performed using MTT assay and flow cytometric analysis, respectively, while caspases 3/7, 8 and 9 activities were examined using the colorimetric method. The expression of cleaved poly ADP ribose polymerase enzyme (PARP) and cytochrome c proteins was investigated by the immune-blot technique.

    RESULTS AND DISCUSSION: HPLC and LC-MS/MS analyses demonstrated that the extract contained mainly lignans and polyphenols. The plant samples markedly suppressed the growth and expansion of HCT116 cells in a concentration- and time-dependent manner with no toxicity against normal human fibroblast CCD18 Co. P. amarus extract, phyllanthin and gallic acid induced mode of cell death primarily through apoptosis as confirmed by the exteriorization of phosphatidylserine. Caspases 3/7, 8, and 9 activities increased in a concentration-dependent manner following 24h treatment. The expressions of cleaved PARP (Asp 214) and cytochrome c were markedly upregulated.

    CONCLUSION: P. amarus extract, phyllanthin and gallic acid exhibited an apoptotic effect on HCT116 cells through the caspases-dependent pathway.

    Matched MeSH terms: Signal Transduction/physiology
  13. Draman MS, Zhang L, Dayan C, Ludgate M
    PMID: 34899596 DOI: 10.3389/fendo.2021.739994
    Graves' orbitopathy (GO) is a complex and poorly understood disease in which extensive remodeling of orbital tissue is dominated by adipogenesis and hyaluronan production. The resulting proptosis is disfiguring and underpins the majority of GO signs and symptoms. While there is strong evidence for the thyrotropin receptor (TSHR) being a thyroid/orbit shared autoantigen, the insulin-like growth factor 1 receptor (IGF1R) is also likely to play a key role in the disease. The pathogenesis of GO has been investigated extensively in the last decade with further understanding of some aspects of the disease. This is mainly derived by using in vitro and ex vivo analysis of the orbital tissues. Here, we have summarized the features of GO pathogenesis involving target autoantigens and their signaling pathways.
    Matched MeSH terms: Signal Transduction/physiology*
  14. Angelopoulou E, Paudel YN, Shaikh MF, Piperi C
    Pharmacol Res, 2020 08;158:104930.
    PMID: 32445958 DOI: 10.1016/j.phrs.2020.104930
    Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD) with the dysregulation of microglial activity being tightly linked to dopaminergic degeneration. Fractalkine (CX3CL1), a chemokine mainly expressed by neurons, can modulate microglial activity through binding to its sole G-protein-coupled receptor (CX3CR1), expressed by microglia. Fractalkine/CX3CR1 signaling is one of the most important mediators of the communication between neurons and microglia, and its emerging role in neurodegenerative disorders including PD has been increasingly recognized. Pre-clinical evidence has revealed that fractalkine signaling axis exerts dual effects on PD-related inflammation and degeneration, which greatly depend on the isoform type (soluble or membrane-bound), animal model (mice or rats, toxin- or proteinopathy-induced), route of toxin administration, time course and specific brain region (striatum, substantia nigra). Furthermore, although existing clinical evidence is scant, it has been indicated that fractalkine may be possibly associated with PD progression, paving the way for future studies investigating its biomarker potential. In this review, we discuss recent evidence on the role of fractalkine/CX3CR1 signaling axis in PD pathogenesis, aiming to shed more light on the molecular mechanisms underlying the neuroinflammation commonly associated with the disease, as well as potential clinical and therapeutic implications.
    Matched MeSH terms: Signal Transduction/physiology
  15. Nadarajah KK
    Int J Mol Sci, 2020 Jul 23;21(15).
    PMID: 32717820 DOI: 10.3390/ijms21155208
    Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
    Matched MeSH terms: Signal Transduction/physiology*
  16. Lee HC, Md Yusof HH, Leong MP, Zainal Abidin S, Seth EA, Hewitt CA, et al.
    Int J Neurosci, 2019 Sep;129(9):871-881.
    PMID: 30775947 DOI: 10.1080/00207454.2019.1580280
    Aims: The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models. Therefore, we aimed to profile the expression of Jak1, Jak2, Stat1, Stat3 and Stat6 at different stages of brain development in the Ts1Cje mouse model of DS. Methods: Whole brain samples from Ts1Cje and wild-type mice at embryonic day (E)10.5, E15, postnatal day (P)1.5; and embryonic cortex-derived neurospheres were collected for gene and protein expression analysis. Gene expression profiles of three brain regions (cerebral cortex, cerebellum and hippocampus) from Ts1Cje and wild-type mice across four time-points (P1.5, P15, P30 and P84) were also analysed. Results: In the developing mouse brain, none of the Jak/Stat genes were differentially expressed in the Ts1Cje model compared to wild-type mice. However, Western blot analyses indicated that phosphorylated (p)-Jak2, p-Stat3 and p-Stat6 were downregulated in the Ts1Cje model. During the postnatal brain development, Jak/Stat genes showed complex expression patterns, as most of the members were downregulated at different selected time-points. Notably, embryonic cortex-derived neurospheres from Ts1Cje mouse brain expressed lower Stat3 and Stat6 protein compared to the wild-type group. Conclusion: The comprehensive expression profiling of Jak/Stat candidates provides insights on the potential role of the JAK-STAT signalling pathway during abnormal development of the Ts1Cje mouse brains.
    Matched MeSH terms: Signal Transduction/physiology
  17. Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, et al.
    Biomed Pharmacother, 2019 Mar;111:765-777.
    PMID: 30612001 DOI: 10.1016/j.biopha.2018.12.101
    Neurodegenerative diseases are usually sporadic in nature and commonly influenced by a wide range of genetic, life style and environmental factors. A unifying feature of Alzheimer's disease (AD) and Parkinson's disease (PD) is the abnormal accumulation and processing of mutant or damaged intra and extracellular proteins; this leads to neuronal vulnerability and dysfunction in the brain. Through a detailed review of ubiquitin proteasome, mRNA splicing, mitochondrial dysfunction, and oxidative stress pathway interrelation on neurodegeneration can improve the understanding of the disease mechanism. The identified pathways common to AD and PD nominate promising new targets for further studies, and as well as biomarkers. These insights suggested would likely provide major stimuli for developing unified treatment approaches to combat neurodegeneration. More broadly, pathways can serve as vehicles for integrating findings from diverse studies of neurodegeneration. The evidence examined in this review provides a brief overview of the current literature on significant pathways in promoting in AD, PD. Additionally, these insights suggest that biomarkers and treatment strategies may require simultaneous targeting of multiple components.
    Matched MeSH terms: Signal Transduction/physiology*
  18. Barzegar Behrooz A, Syahir A, Ahmad S
    J Drug Target, 2019 03;27(3):257-269.
    PMID: 29911902 DOI: 10.1080/1061186X.2018.1479756
    CD133 (prominin-1), a pentaspan membrane glycoprotein, is one of the most well-characterized biomarkers used for the isolation of cancer stem cells (CSCs). The presence of CSCs is one of the main causes of tumour reversal and resilience. Accumulating evidence has shown that CD133 might be responsible for CSCs tumourigenesis, metastasis and chemoresistance. It is now understood that CD133 interacts with the Wnt/β-catenin and PI3K-Akt signalling pathways. Moreover, CD133 can upregulate the expression of the FLICE-like inhibitory protein (FLIP) in CD133-positive cells, inhibiting apoptosis. In addition, CD133 can increase angiogenesis by activating the Wnt signalling pathway and increasing the expression of vascular endothelial growth factor-A (VEGF-A) and interleukin-8. Therefore, CD133 could be considered to be an 'Achilles' heel' for CSCs, because by inhibiting this protein, the signalling pathways that are involved in cell proliferation will also be inhibited. By understanding the molecular biology of CD133, we can not only isolate stem cells but can also utilise it as a therapeutic strategy. In this review, we summarise new insights into the fundamental cell biology of CD133 and discuss the involvement of CD133 in metastasis, metabolism, tumourigenesis, drug-resistance, apoptosis and autophagy.
    Matched MeSH terms: Signal Transduction/physiology
  19. Sharif U, Mahmud NM, Kay P, Yang YC, Harding SP, Grierson I, et al.
    J Cell Mol Med, 2019 01;23(1):405-416.
    PMID: 30338926 DOI: 10.1111/jcmm.13944
    The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age-related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)-known to accumulate on the ageing RPE's underlying Bruch's membrane in situ-on both key lysosomal cathepsins and NF-κB signalling in RPE. Cathepsin L activity and NF-κB effector levels decreased significantly following 2-week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE-related change of NF-κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE-exposed cells had significantly higher ratio of phospho-p65(Ser536)/total p65 compared to non-AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE-related activation of NF-κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF-κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para-inflammatory) mechanism but renders them more responsive to pro-inflammatory stimuli.
    Matched MeSH terms: Signal Transduction/physiology*
  20. Ng CT, Fong LY, Yong YK, Hakim MN, Ahmad Z
    Cytokine, 2018 11;111:541-550.
    PMID: 29909980 DOI: 10.1016/j.cyto.2018.06.010
    Endothelial barrier dysfunction leads to increased endothelial permeability and is an early step in the development of vascular inflammatory diseases such as atherosclerosis. Interferon-γ (IFN-γ), a proinflammatory cytokine, is known to cause increased endothelial permeability. However, the mechanisms by which IFN-γ disrupts the endothelial barrier have not been clarified. This study aimed to investigate how IFN-γ impairs the endothelial barrier integrity by specifically examining the roles of caldesmon, adherens junctions (AJs) and p38 mitogen-activated protein (MAP) kinase in IFN-γ-induced endothelial barrier dysfunction. IFN-γ exhibited a biphasic effect on caldesmon localization and both the structural organization and protein expression of AJs. In the early phase (4-8 h), IFN-γ induced the formation of peripheral caldesmon bands and discontinuous AJs, while AJ protein expression was unchanged. Interestingly, IFN-γ also stimulated caldesmon phosphorylation, resulting in actin dissociation from caldesmon at 8 h. Conversely, changes seen in the late phase (16-24 h) included cytoplasmic caldesmon dispersal, AJ linearization and junctional area reduction, which were associated with reduced membrane, cytoskeletal and total AJ protein expression. In addition, IFN-γ enhanced myosin binding to caldesmon at 12 h and persisted up to 24 h. Furthermore, inhibition of p38 MAP kinase by SB203580 did not reverse either the early or late phase changes observed. These data suggest that IFN-γ may activate signaling molecules other than p38 MAP kinase. In conclusion, our findings enhance the current understanding of how IFN-γ disrupts endothelial barrier function and reveal potential therapeutic targets, such as caldesmon and AJs, for the treatment of IFN-γ-associated vascular inflammatory diseases.
    Matched MeSH terms: Signal Transduction/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links