Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
    Matched MeSH terms: Spatio-Temporal Analysis
  2. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005546.
    PMID: 28410388 DOI: 10.1371/journal.pntd.0005546
    BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range.

    METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.

    CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.

    Matched MeSH terms: Spatio-Temporal Analysis
  3. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S
    PLoS One, 2014;9(5):e94520.
    PMID: 24827560 DOI: 10.1371/journal.pone.0094520
    The suction sockets that are commonly prescribed for transtibial amputees are believed to provide a better suspension than the pin/lock systems. Nevertheless, their effect on amputees' gait performance has not yet been fully investigated. The main intention of this study was to understand the potential effects of the Seal-in (suction) and the Dermo (pin/lock) suspension systems on amputees' gait performance.
    Matched MeSH terms: Spatio-Temporal Analysis
  4. Lim JH, Lee CW, Kudo I
    Environ Monit Assess, 2015 May;187(5):246.
    PMID: 25864082 DOI: 10.1007/s10661-015-4487-5
    Phytoplankton growth (μ) and grazing loss (g) rates were measured monthly by the Landry-Hassett dilution method over a 2-year period at both estuarine (Klang) and coastal water (Port Dickson) systems along the Straits of Malacca. Chlorophyll a (Chl a) concentration ranged from 0.20 to 4.47 μg L(-1) at Klang except on two occasions when Chl a spiked above 10 μg L(-1). In contrast, Chl a concentrations were relatively stable at Port Dickson (0.14 to 2.76 μg L(-1)). From the rate measurements, μ was higher (t = 2.01, df = 43, p  0.80). g ranged from 0.30 to 1.50 and 0.21 to 1.51 day(-1) at Klang and Port Dickson, respectively. In this study, grazing loss was coupled to phytoplankton growth, and the ratio of g/μ or grazing pressure which estimates the proportion of primary production grazed was 50% at Klang and lower than at Port Dickson (68%; t = 2.213, df = 36, p 
    Matched MeSH terms: Spatio-Temporal Analysis
  5. Behera MR, Chun C, Palani S, Tkalich P
    Mar Pollut Bull, 2013 Dec 15;77(1-2):380-95.
    PMID: 24139643 DOI: 10.1016/j.marpolbul.2013.09.043
    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales.
    Matched MeSH terms: Spatio-Temporal Analysis
  6. Usinowicz J, Chang-Yang CH, Chen YY, Clark JS, Fletcher C, Garwood NC, et al.
    Nature, 2017 10 05;550(7674):105-108.
    PMID: 28953870 DOI: 10.1038/nature24038
    The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.
    Matched MeSH terms: Spatio-Temporal Analysis*
  7. Sham NM, Krishnarajah I, Ibrahim NA, Lye MS
    Geospat Health, 2014 May;8(2):503-7.
    PMID: 24893027
    Hand, foot and mouth disease (HFMD) is endemic in Sarawak, Malaysia. In this study, a geographical information system (GIS) was used to investigate the relationship between the reported HFMD cases and the spatial patterns in 11 districts of Sarawak from 2006 to 2012. Within this 7-years period, the highest number of reported HFMD cases occurred in 2006, followed by 2012, 2008, 2009, 2007, 2010 and 2011, in descending order. However, while there was no significant distribution pattern or clustering in the first part of the study period (2006 to 2011) based on Moran's I statistic, spatial autocorrelation (P = 0.068) was observed in 2012.
    Matched MeSH terms: Spatio-Temporal Analysis
  8. Chénard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, et al.
    Sci Rep, 2019 Nov 08;9(1):16390.
    PMID: 31704973 DOI: 10.1038/s41598-019-52648-x
    Singapore, an equatorial island in South East Asia, is influenced by a bi-annual reversal of wind directions which defines two monsoon seasons. We characterized the dynamics of the microbial communities of Singapore coastal waters by collecting monthly samples between February 2017 and July 2018 at four sites located across two straits with different trophic status, and sequencing the V6-V8 region of the small sub-unit ribosomal RNA gene (rRNA gene) of Bacteria, Archaea, and Eukaryota. Johor Strait, which is subjected to wider environmental fluctuations from anthropogenic activities, presented a higher abundance of copiotrophic microbes, including Cellvibrionales and Rhodobacterales. The mesotrophic Singapore Strait, where the seasonal variability is caused by changes in the oceanographic conditions, harboured a higher proportion of typically marine microbe groups such as Synechococcales, Nitrosupumilales, SAR11, SAR86, Marine Group II Archaea and Radiolaria. In addition, we observed seasonal variability of the microbial communities in the Singapore Strait, which was possibly influenced by the alternating monsoon regime, while no seasonal pattern was detected in the Johor Strait.
    Matched MeSH terms: Spatio-Temporal Analysis
  9. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Fakharian K
    Environ Monit Assess, 2014 Sep;186(9):5797-815.
    PMID: 24891071 DOI: 10.1007/s10661-014-3820-8
    In recent years, groundwater quality has become a global concern due to its effect on human life and natural ecosystems. To assess the groundwater quality in the Amol-Babol Plain, a total of 308 water samples were collected during wet and dry seasons in 2009. The samples were analysed for their physico-chemical and biological constituents. Multivariate statistical analysis and geostatistical techniques were applied to assess the spatial and temporal variabilities of groundwater quality and to identify the main factors and sources of contamination. Principal component analysis (PCA) revealed that seven factors explained around 75% of the total variance, which highlighted salinity, hardness and biological pollution as the dominant factors affecting the groundwater quality in the Plain. Two-way analysis of variance (ANOVA) was conducted on the dataset to evaluate the spatio-temporal variation. The results showed that there were no significant temporal variations between the two seasons, which explained the similarity between six component factors in dry and wet seasons based on the PCA results. There are also significant spatial differences (p > 0.05) of the parameters under study, including salinity, potassium, sulphate and dissolved oxygen in the plain. The least significant difference (LSD) test revealed that groundwater salinity in the eastern region is significantly different to the central and western side of the study area. Finally, multivariate analysis and geostatistical techniques were combined as an effective method for demonstrating the spatial structure of multivariate spatial data. It was concluded that multiple natural processes and anthropogenic activities were the main sources of groundwater salinization, hardness and microbiological contamination of the study area.
    Matched MeSH terms: Spatio-Temporal Analysis
  10. Sriwahyuni E, Sriwahyuni E, Fuad A, Ahmad RA, Ahmad RA, Rustamaji R, et al.
    Med J Malaysia, 2020 05;75(Suppl 1):41-47.
    PMID: 32483106
    INTRODUCTION: Rubella infection during early pregnancy may cause fatal consequences such as congenital rubella syndrome (CRS). The incidence rate (IR) of CRS confirmed cases in Yogyakarta, Indonesia between July 2008 and June 2013 was high at 0.05 per 1,000 live births. This study aimed to discover the spatiotemporal pattern of rubella and CRS and also identify whether the proximity of rubella cases was associated with the occurrence of CRS cases.

    METHODS: This observational research used a spatiotemporal approach. We obtained CRS and rubella surveillance data from Dr. Sardjito Hospital, Provincial, and District Health Offices in Yogyakarta, Indonesia during January-April 2019. The home addresses of rubella and CRS cases were geocoded using the Global Positioning System. Average of the nearest neighbour and space-time permutation analyses were conducted to discover the spatiotemporal patterns and clusters of rubella and CRS cases.

    RESULTS: The peak of rubella cases occurred in 2017 (IR: 22.3 per 100,000 population). Twelve confirmed cases of CRS were found in the 2016-2018 period (IR: 0.05 per 1,000 live births). The occurrence of CRS in Yogyakarta was detected 6-8 months after the increase and peak of rubella cases. The spatiotemporal analysis showed that rubella cases were mostly clustered, while CRS cases were distributed in a dispersed pattern. Rubella cases were found within a buffer zone of 2.5 km from any CRS case.

    CONCLUSIONS: Rubella cases were spatiotemporally associated with the occurrence of CRS in Yogyakarta. We recommend strengthening the surveillance system of CRS and rubella cases in order to contain any further spreading of the disease.

    Matched MeSH terms: Spatio-Temporal Analysis
  11. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
    Matched MeSH terms: Spatio-Temporal Analysis*
  12. Ling CY, Gruebner O, Krämer A, Lakes T
    Geospat Health, 2014 Nov;9(1):131-40.
    PMID: 25545931
    Spatio-temporal patterns of dengue risk in Malaysia were studied both at the address and the sub-district level in the province of Selangor and the Federal Territory of Kuala Lumpur. We geocoded laboratory-confirmed dengue cases from the years 2008 to 2010 at the address level and further aggregated the cases in proportion to the population at risk at the sub-district level. Kulldorff's spatial scan statistic was applied for the investigation that identified changing spatial patterns of dengue cases at both levels. At the address level, spatio-temporal clusters of dengue cases were concentrated at the central and south-eastern part of the study area in the early part of the years studied. Analyses at the sub-district level revealed a consistent spatial clustering of a high number of cases proportional to the population at risk. Linking both levels assisted in the identification of differences and confirmed the presence of areas at high risk for dengue infection. Our results suggest that the observed dengue cases had both a spatial and a temporal epidemiological component, which needs to be acknowledged and addressed to develop efficient control measures, including spatially explicit vector control. Our findings highlight the importance of detailed geographical analysis of disease cases in heterogeneous environments with a focus on clustered populations at different spatial and temporal scales. We conclude that bringing together information on the spatio-temporal distribution of dengue cases with a deeper insight of linkages between dengue risk, climate factors and land use constitutes an important step towards the development of an effective risk management strategy.
    Matched MeSH terms: Spatio-Temporal Analysis
  13. Chan TC, Hwang JS, Chen RH, King CC, Chiang PH
    BMC Public Health, 2014 Jan 08;14:11.
    PMID: 24400725 DOI: 10.1186/1471-2458-14-11
    BACKGROUND: Severe epidemics of enterovirus have occurred frequently in Malaysia, Singapore, Taiwan, Cambodia, and China, involving cases of pulmonary edema, hemorrhage and encephalitis, and an effective vaccine has not been available. The specific aim of this study was to understand the epidemiological characteristics of mild and severe enterovirus cases through integrated surveillance data.

    METHODS: All enterovirus cases in Taiwan over almost ten years from three main databases, including national notifiable diseases surveillance, sentinel physician surveillance and laboratory surveillance programs from July 1, 1999 to December 31, 2008 were analyzed. The Pearson's correlation coefficient was applied for measuring the consistency of the trends in the cases between different surveillance systems. Cross correlation analysis in a time series model was applied for examining the capability to predict severe enterovirus infections. Poisson temporal, spatial and space-time scan statistics were used for identifying the most likely clusters of severe enterovirus outbreaks. The directional distribution method with two standard deviations of ellipse was applied to measure the size and the movement of the epidemic.

    RESULTS: The secular trend showed that the number of severe EV cases peaked in 2008, and the number of mild EV cases was significantly correlated with that of severe ones occurring in the same week [r = 0.553, p spatio-temporal clusters in June 2008, the mild cases had begun to rise since May 2008, and the outbreak spread from south to north.

    CONCLUSIONS: Local public health professionals can monitor the temporal and spatial trends plus spatio-temporal clusters and isolation rate of EV-71 in mild and severe EV cases in a community when virus transmission is high, to provide early warning signals and to prevent subsequent severe epidemics.

    Matched MeSH terms: Spatio-Temporal Analysis
  14. Gardner PC, Goossens B, Goon Ee Wern J, Kretzschmar P, Bohm T, Vaughan IP
    PLoS One, 2018;13(4):e0195444.
    PMID: 29649279 DOI: 10.1371/journal.pone.0195444
    Identifying the consequences of tropical forest degradation is essential to mitigate its effects upon forest fauna. Large forest-dwelling mammals are often highly sensitive to environmental perturbation through processes such as fragmentation, simplification of habitat structure, and abiotic changes including increased temperatures where the canopy is cleared. Whilst previous work has focused upon species richness and rarity in logged forest, few look at spatial and temporal behavioural responses to forest degradation. Using camera traps, we explored the relationships between diel activity, behavioural expression, habitat use and ambient temperature to understand how the wild free-ranging Bornean banteng (Bos javanicus lowi) respond to logging and regeneration. Three secondary forests in Sabah, Malaysian Borneo were studied, varying in the time since last logging (6-23 years). A combination of generalised linear mixed models and generalised linear models were constructed using >36,000 trap-nights. Temperature had no significant effect on activity, however it varied markedly between forests, with the period of intense heat shortening as forest regeneration increased over the years. Bantengs regulated activity, with a reduction during the wet season in the most degraded forest (z = -2.6, Std. Error = 0.13, p = 0.01), and reductions during midday hours in forest with limited regeneration, however after >20 years of regrowth, activity was more consistent throughout the day. Foraging and use of open canopy areas dominated the activity budget when regeneration was limited. As regeneration advanced, this was replaced by greater investment in travelling and using a closed canopy. Forest degradation modifies the ambient temperature, and positively influences flooding and habitat availability during the wet season. Retention of a mosaic of mature forest patches within commercial forests could minimise these effects and also provide refuge, which is key to heat dissipation and the prevention of thermal stress, whilst retention of degraded forest could provide forage.
    Matched MeSH terms: Spatio-Temporal Analysis*
  15. Ooi CH, Phang WK, Kent Liew JW, Lau YL
    Am J Trop Med Hyg, 2021 Mar 22;104(5):1814-1819.
    PMID: 33755585 DOI: 10.4269/ajtmh.20-1304
    Zoonotic knowlesi malaria has replaced human malaria as the most prevalent malaria disease in Malaysia. The persistence of knowlesi malaria in high-risk transmission areas or hotspots can be discouraging to existing malaria elimination efforts. In this study, retrospective data of laboratory-confirmed knowlesi malaria cases were obtained from the Sarawak Health Department to investigate the spatiotemporal patterns and clustering of knowlesi malaria in the state of Sarawak from 2008 to 2017. Purely spatial, purely temporal, and spatiotemporal analyses were performed using SaTScan software to define clustering of knowlesi malaria incidence. Purely spatial and spatiotemporal analyses indicated most likely clusters of knowlesi malaria in the northern region of Sarawak, along the Sarawak-Kalimantan border, and the inner central region of Sarawak between 2008 and 2017. Temporal cluster was detected between September 2016 and December 2017. This study provides evidence of the existence of statistically significant Plasmodium knowlesi malaria clusters in Sarawak, Malaysia. The analysis approach applied in this study showed potential in establishing surveillance and risk management system for knowlesi malaria control as Malaysia approaches human malaria elimination.
    Matched MeSH terms: Spatio-Temporal Analysis*
  16. Phang WK, Hamid MHA, Jelip J, Mudin RN, Chuang TW, Lau YL, et al.
    PMID: 33322414 DOI: 10.3390/ijerph17249271
    The life-threatening zoonotic malaria cases caused by Plasmodium knowlesi in Malaysia has recently been reported to be the highest among all malaria cases; however, previous studies have mainly focused on the transmission of P. knowlesi in Malaysian Borneo (East Malaysia). This study aimed to describe the transmission patterns of P. knowlesi infection in Peninsular Malaysia (West Malaysia). The spatial distribution of P. knowlesi was mapped across Peninsular Malaysia using Geographic Information System techniques. Local indicators of spatial associations were used to evaluate spatial patterns of P. knowlesi incidence. Seasonal autoregressive integrated moving average models were utilized to analyze the monthly incidence of knowlesi malaria in the hotspot region from 2012 to 2017 and to forecast subsequent incidence in 2018. Spatial analysis revealed that hotspots were clustered in the central-northern region of Peninsular Malaysia. Time series analysis revealed the strong seasonality of transmission from January to March. This study provides fundamental information on the spatial distribution and temporal dynamic of P. knowlesi in Peninsular Malaysia from 2011 to 2018. Current control policy should consider different strategies to prevent the transmission of both human and zoonotic malaria, particularly in the hotspot region, to ensure a successful elimination of malaria in the future.
    Matched MeSH terms: Spatio-Temporal Analysis
  17. Wong ML, Chua TH, Leong CS, Khaw LT, Fornace K, Wan-Sulaiman WY, et al.
    PLoS Negl Trop Dis, 2015;9(10):e0004135.
    PMID: 26448052 DOI: 10.1371/journal.pntd.0004135
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000 hrs.

    CONCLUSIONS/SIGNIFICANCE: This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region.

    Matched MeSH terms: Spatio-Temporal Analysis
  18. Arai T
    PLoS One, 2014;9(6):e100779.
    PMID: 24964195 DOI: 10.1371/journal.pone.0100779
    The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.
    Matched MeSH terms: Spatio-Temporal Analysis*
  19. Ganasegeran K, Ch'ng ASH, Aziz ZA, Looi I
    Sci Rep, 2020 Jul 09;10(1):11353.
    PMID: 32647336 DOI: 10.1038/s41598-020-68335-1
    Stroke has emerged as a major public health concern in Malaysia. We aimed to determine the trends and temporal associations of real-time health information-seeking behaviors (HISB) and stroke incidences in Malaysia. We conducted a countrywide ecological correlation and time series study using novel internet multi-timeline data stream of 6,282 hit searches and conventional surveillance data of 14,396 stroke cases. We searched popular search terms related to stroke in Google Trends between January 2004 and March 2019. We explored trends by comparing average relative search volumes (RSVs) by month and weather through linear regression bootstrapping methods. Geographical variations between regions and states were determined through spatial analytics. Ecological correlation analysis between RSVs and stroke incidences was determined via Pearson's correlations. Forecasted model was yielded through exponential smoothing. HISB showed both cyclical and seasonal patterns. Average RSV was significantly higher during Northeast Monsoon when compared to Southwest Monsoon (P 
    Matched MeSH terms: Spatio-Temporal Analysis
  20. Sanchez-Bezanilla S, Hood RJ, Collins-Praino LE, Turner RJ, Walker FR, Nilsson M, et al.
    J Cereb Blood Flow Metab, 2021 09;41(9):2439-2455.
    PMID: 33779358 DOI: 10.1177/0271678X211005877
    There is emerging evidence suggesting that a cortical stroke can cause delayed and remote hippocampal dysregulation, leading to cognitive impairment. In this study, we aimed to investigate motor and cognitive outcomes after experimental stroke, and their association with secondary neurodegenerative processes. Specifically, we used a photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Motor function was assessed using the cylinder and grid walk tasks. Changes in cognition were assessed using a mouse touchscreen platform. Neuronal loss, gliosis and amyloid-β accumulation were investigated in the peri-infarct and ipsilateral hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed persistent impairment in cognitive function post-stroke, whilst there was a modest spontaneous motor recovery over the investigated period of 84 days. In the peri-infarct region, we detected a reduction in neuronal loss and decreased neuroinflammation over time post-stroke, which potentially explains the spontaneous motor recovery. Conversely, we observed persistent neuronal loss together with concomitant increased neuroinflammation and amyloid-β accumulation in the hippocampus, which likely accounts for the persistent cognitive dysfunction. Our findings indicate that cortical stroke induces secondary neurodegenerative processes in the hippocampus, a region remote from the primary infarct, potentially contributing to the progression of post-stroke cognitive impairment.
    Matched MeSH terms: Spatio-Temporal Analysis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links